Cargando…
Development and validation of a transformer-based CAD model for improving the consistency of BI-RADS category 3–5 nodule classification among radiologists: a multiple center study
BACKGROUND: Significant differences exist in the classification outcomes for radiologists using ultrasonography-based Breast Imaging Reporting and Data Systems for diagnosing category 3–5 (BI-RADS 3–5) breast nodules, due to a lack of clear and distinguishing image features. Consequently, this retro...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240028/ https://www.ncbi.nlm.nih.gov/pubmed/37284087 http://dx.doi.org/10.21037/qims-22-1091 |
_version_ | 1785053649233248256 |
---|---|
author | Ji, Hongtao Zhu, Qiang Ma, Teng Cheng, Yun Zhou, Shuai Ren, Wei Huang, Huilian He, Wen Ran, Haitao Ruan, Litao Guo, Yanli Tian, Jiawei Chen, Wu Chen, Luzeng Wang, Zhiyuan Zhou, Qi Niu, Lijuan Zhang, Wei Yang, Ruimin Chen, Qin Zhang, Ruifang Wang, Hui Li, Li Liu, Minghui Nie, Fang Zhou, Aiyun |
author_facet | Ji, Hongtao Zhu, Qiang Ma, Teng Cheng, Yun Zhou, Shuai Ren, Wei Huang, Huilian He, Wen Ran, Haitao Ruan, Litao Guo, Yanli Tian, Jiawei Chen, Wu Chen, Luzeng Wang, Zhiyuan Zhou, Qi Niu, Lijuan Zhang, Wei Yang, Ruimin Chen, Qin Zhang, Ruifang Wang, Hui Li, Li Liu, Minghui Nie, Fang Zhou, Aiyun |
author_sort | Ji, Hongtao |
collection | PubMed |
description | BACKGROUND: Significant differences exist in the classification outcomes for radiologists using ultrasonography-based Breast Imaging Reporting and Data Systems for diagnosing category 3–5 (BI-RADS 3–5) breast nodules, due to a lack of clear and distinguishing image features. Consequently, this retrospective study investigated the improvement of BI-RADS 3–5 classification consistency using a transformer-based computer-aided diagnosis (CAD) model. METHODS: Independently, 5 radiologists performed BI-RADS annotations on 21,332 breast ultrasonographic images collected from 3,978 female patients from 20 clinical centers in China. All images were divided into training, validation, testing, and sampling sets. The trained transformer-based CAD model was then used to classify test images, for which sensitivity (SEN), specificity (SPE), accuracy (ACC), area under the curve (AUC), and calibration curve were evaluated. Variations in these metrics among the 5 radiologists were analyzed by referencing BI-RADS classification results for the sampling test set provided by CAD to determine whether classification consistency (the k value), SEN, SPE, and ACC could be improved. RESULTS: After the training set (11,238 images) and validation set (2,996 images) were learned by the CAD model, the classification ACC of the CAD model applied to the test set (7,098 images) was 94.89% in category 3, 96.90% in category 4A, 95.49% in category 4B, 92.28% in category 4C, and 95.45% in category 5 nodules. Based on pathological results, the AUC of the CAD model was 0.924 and the predicted probability of CAD was a little higher than the actual probability in the calibration curve. After referencing BI-RADS classification results, the adjustments were made to 1,583 nodules, of which 905 were classified to a lower category and 678 to a higher category in the sampling test set. As a result, the ACC (72.41–82.65%), SEN (32.73–56.98%), and SPE (82.46–89.26%) of the classification by each radiologist were significantly improved on average, with the consistency (k values) in almost all of them increasing to >0.6. CONCLUSIONS: The radiologist’s classification consistency was markedly improved with almost all the k values increasing by a value greater than 0.6, and the diagnostic efficiency was also improved by approximately 24% (32.73% to 56.98%) and 7% (82.46% to 89.26%) for SEN and SPE, respectively, of the total classification on average. The transformer-based CAD model can help to improve the radiologist’s diagnostic efficacy and consistency with others in the classification of BI-RADS 3–5 nodules. |
format | Online Article Text |
id | pubmed-10240028 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | AME Publishing Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-102400282023-06-06 Development and validation of a transformer-based CAD model for improving the consistency of BI-RADS category 3–5 nodule classification among radiologists: a multiple center study Ji, Hongtao Zhu, Qiang Ma, Teng Cheng, Yun Zhou, Shuai Ren, Wei Huang, Huilian He, Wen Ran, Haitao Ruan, Litao Guo, Yanli Tian, Jiawei Chen, Wu Chen, Luzeng Wang, Zhiyuan Zhou, Qi Niu, Lijuan Zhang, Wei Yang, Ruimin Chen, Qin Zhang, Ruifang Wang, Hui Li, Li Liu, Minghui Nie, Fang Zhou, Aiyun Quant Imaging Med Surg Original Article BACKGROUND: Significant differences exist in the classification outcomes for radiologists using ultrasonography-based Breast Imaging Reporting and Data Systems for diagnosing category 3–5 (BI-RADS 3–5) breast nodules, due to a lack of clear and distinguishing image features. Consequently, this retrospective study investigated the improvement of BI-RADS 3–5 classification consistency using a transformer-based computer-aided diagnosis (CAD) model. METHODS: Independently, 5 radiologists performed BI-RADS annotations on 21,332 breast ultrasonographic images collected from 3,978 female patients from 20 clinical centers in China. All images were divided into training, validation, testing, and sampling sets. The trained transformer-based CAD model was then used to classify test images, for which sensitivity (SEN), specificity (SPE), accuracy (ACC), area under the curve (AUC), and calibration curve were evaluated. Variations in these metrics among the 5 radiologists were analyzed by referencing BI-RADS classification results for the sampling test set provided by CAD to determine whether classification consistency (the k value), SEN, SPE, and ACC could be improved. RESULTS: After the training set (11,238 images) and validation set (2,996 images) were learned by the CAD model, the classification ACC of the CAD model applied to the test set (7,098 images) was 94.89% in category 3, 96.90% in category 4A, 95.49% in category 4B, 92.28% in category 4C, and 95.45% in category 5 nodules. Based on pathological results, the AUC of the CAD model was 0.924 and the predicted probability of CAD was a little higher than the actual probability in the calibration curve. After referencing BI-RADS classification results, the adjustments were made to 1,583 nodules, of which 905 were classified to a lower category and 678 to a higher category in the sampling test set. As a result, the ACC (72.41–82.65%), SEN (32.73–56.98%), and SPE (82.46–89.26%) of the classification by each radiologist were significantly improved on average, with the consistency (k values) in almost all of them increasing to >0.6. CONCLUSIONS: The radiologist’s classification consistency was markedly improved with almost all the k values increasing by a value greater than 0.6, and the diagnostic efficiency was also improved by approximately 24% (32.73% to 56.98%) and 7% (82.46% to 89.26%) for SEN and SPE, respectively, of the total classification on average. The transformer-based CAD model can help to improve the radiologist’s diagnostic efficacy and consistency with others in the classification of BI-RADS 3–5 nodules. AME Publishing Company 2023-04-28 2023-06-01 /pmc/articles/PMC10240028/ /pubmed/37284087 http://dx.doi.org/10.21037/qims-22-1091 Text en 2023 Quantitative Imaging in Medicine and Surgery. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Original Article Ji, Hongtao Zhu, Qiang Ma, Teng Cheng, Yun Zhou, Shuai Ren, Wei Huang, Huilian He, Wen Ran, Haitao Ruan, Litao Guo, Yanli Tian, Jiawei Chen, Wu Chen, Luzeng Wang, Zhiyuan Zhou, Qi Niu, Lijuan Zhang, Wei Yang, Ruimin Chen, Qin Zhang, Ruifang Wang, Hui Li, Li Liu, Minghui Nie, Fang Zhou, Aiyun Development and validation of a transformer-based CAD model for improving the consistency of BI-RADS category 3–5 nodule classification among radiologists: a multiple center study |
title | Development and validation of a transformer-based CAD model for improving the consistency of BI-RADS category 3–5 nodule classification among radiologists: a multiple center study |
title_full | Development and validation of a transformer-based CAD model for improving the consistency of BI-RADS category 3–5 nodule classification among radiologists: a multiple center study |
title_fullStr | Development and validation of a transformer-based CAD model for improving the consistency of BI-RADS category 3–5 nodule classification among radiologists: a multiple center study |
title_full_unstemmed | Development and validation of a transformer-based CAD model for improving the consistency of BI-RADS category 3–5 nodule classification among radiologists: a multiple center study |
title_short | Development and validation of a transformer-based CAD model for improving the consistency of BI-RADS category 3–5 nodule classification among radiologists: a multiple center study |
title_sort | development and validation of a transformer-based cad model for improving the consistency of bi-rads category 3–5 nodule classification among radiologists: a multiple center study |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240028/ https://www.ncbi.nlm.nih.gov/pubmed/37284087 http://dx.doi.org/10.21037/qims-22-1091 |
work_keys_str_mv | AT jihongtao developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT zhuqiang developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT mateng developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT chengyun developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT zhoushuai developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT renwei developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT huanghuilian developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT hewen developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT ranhaitao developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT ruanlitao developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT guoyanli developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT tianjiawei developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT chenwu developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT chenluzeng developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT wangzhiyuan developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT zhouqi developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT niulijuan developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT zhangwei developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT yangruimin developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT chenqin developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT zhangruifang developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT wanghui developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT lili developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT liuminghui developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT niefang developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy AT zhouaiyun developmentandvalidationofatransformerbasedcadmodelforimprovingtheconsistencyofbiradscategory35noduleclassificationamongradiologistsamultiplecenterstudy |