Cargando…
Targeted imaging of very late antigen-4 for noninvasive assessment of lung inflammation-fibrosis axis
BACKGROUND: The lack of noninvasive methods for assessment of dysregulated inflammation as a major driver of fibrosis (i.e., inflammation-fibrosis axis) has been a major challenge to precision management of fibrotic lung diseases. Here, we determined the potential of very late antigen-4 (VLA-4)-targ...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240482/ https://www.ncbi.nlm.nih.gov/pubmed/37273103 http://dx.doi.org/10.1186/s13550-023-01006-0 |
_version_ | 1785053766233358336 |
---|---|
author | Zhu, Qin Barnes, Clayton E. Mannes, Philip Z. Latoche, Joseph D. Day, Kathryn E. Nedrow, Jessie R. Novelli, Enrico M. Anderson, Carolyn J. Tavakoli, Sina |
author_facet | Zhu, Qin Barnes, Clayton E. Mannes, Philip Z. Latoche, Joseph D. Day, Kathryn E. Nedrow, Jessie R. Novelli, Enrico M. Anderson, Carolyn J. Tavakoli, Sina |
author_sort | Zhu, Qin |
collection | PubMed |
description | BACKGROUND: The lack of noninvasive methods for assessment of dysregulated inflammation as a major driver of fibrosis (i.e., inflammation-fibrosis axis) has been a major challenge to precision management of fibrotic lung diseases. Here, we determined the potential of very late antigen-4 (VLA-4)-targeted positron emission tomography (PET) to detect inflammation in a mouse model of bleomycin-induced fibrotic lung injury. METHOD: Single time-point and longitudinal VLA-4-targeted PET was performed using a high-affinity peptidomimetic radiotracer, (64)Cu-LLP2A, at weeks 1, 2, and 4 after bleomycin-induced (2.5 units/kg) lung injury in C57BL/6J mice. The severity of fibrosis was determined by measuring the hydroxyproline content of the lungs and expression of markers of extracellular matrix remodeling. Flow cytometry and histology was performed to determine VLA-4 expression across different leukocyte subsets and their spatial distribution. RESULTS: Lung uptake of (64)Cu-LLP2A was significantly elevated throughout different stages of the progression of bleomycin-induced injury. High lung uptake of (64)Cu-LLP2A at week-1 post-bleomycin was a predictor of poor survival over the 4-week follow up, supporting the prognostic potential of (64)Cu-LLP2A PET during the early stage of the disease. Additionally, the progressive increase in (64)Cu-LLP2A uptake from week-1 to week-4 post-bleomycin correlated with the ultimate extent of lung fibrosis and ECM remodeling. Flow cytometry revealed that LLP2A binding was restricted to leukocytes. A combination of increased expression of VLA-4 by alveolar macrophages and accumulation of VLA-4-expressing interstitial and monocyte-derived macrophages as well as dendritic cells was noted in bleomycin-injured, compared to control, lungs. Histology confirmed the increased expression of VLA-4 in bleomycin-injured lungs, particularly in inflamed and fibrotic regions. CONCLUSIONS: VLA-4-targeted PET allows for assessment of the inflammation-fibrosis axis and prediction of disease progression in a murine model. The potential of (64)Cu-LLP2A PET for assessment of the inflammation-fibrosis axis in human fibrotic lung diseases needs to be further investigated. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13550-023-01006-0. |
format | Online Article Text |
id | pubmed-10240482 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-102404822023-06-06 Targeted imaging of very late antigen-4 for noninvasive assessment of lung inflammation-fibrosis axis Zhu, Qin Barnes, Clayton E. Mannes, Philip Z. Latoche, Joseph D. Day, Kathryn E. Nedrow, Jessie R. Novelli, Enrico M. Anderson, Carolyn J. Tavakoli, Sina EJNMMI Res Original Research BACKGROUND: The lack of noninvasive methods for assessment of dysregulated inflammation as a major driver of fibrosis (i.e., inflammation-fibrosis axis) has been a major challenge to precision management of fibrotic lung diseases. Here, we determined the potential of very late antigen-4 (VLA-4)-targeted positron emission tomography (PET) to detect inflammation in a mouse model of bleomycin-induced fibrotic lung injury. METHOD: Single time-point and longitudinal VLA-4-targeted PET was performed using a high-affinity peptidomimetic radiotracer, (64)Cu-LLP2A, at weeks 1, 2, and 4 after bleomycin-induced (2.5 units/kg) lung injury in C57BL/6J mice. The severity of fibrosis was determined by measuring the hydroxyproline content of the lungs and expression of markers of extracellular matrix remodeling. Flow cytometry and histology was performed to determine VLA-4 expression across different leukocyte subsets and their spatial distribution. RESULTS: Lung uptake of (64)Cu-LLP2A was significantly elevated throughout different stages of the progression of bleomycin-induced injury. High lung uptake of (64)Cu-LLP2A at week-1 post-bleomycin was a predictor of poor survival over the 4-week follow up, supporting the prognostic potential of (64)Cu-LLP2A PET during the early stage of the disease. Additionally, the progressive increase in (64)Cu-LLP2A uptake from week-1 to week-4 post-bleomycin correlated with the ultimate extent of lung fibrosis and ECM remodeling. Flow cytometry revealed that LLP2A binding was restricted to leukocytes. A combination of increased expression of VLA-4 by alveolar macrophages and accumulation of VLA-4-expressing interstitial and monocyte-derived macrophages as well as dendritic cells was noted in bleomycin-injured, compared to control, lungs. Histology confirmed the increased expression of VLA-4 in bleomycin-injured lungs, particularly in inflamed and fibrotic regions. CONCLUSIONS: VLA-4-targeted PET allows for assessment of the inflammation-fibrosis axis and prediction of disease progression in a murine model. The potential of (64)Cu-LLP2A PET for assessment of the inflammation-fibrosis axis in human fibrotic lung diseases needs to be further investigated. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13550-023-01006-0. Springer Berlin Heidelberg 2023-06-05 /pmc/articles/PMC10240482/ /pubmed/37273103 http://dx.doi.org/10.1186/s13550-023-01006-0 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Research Zhu, Qin Barnes, Clayton E. Mannes, Philip Z. Latoche, Joseph D. Day, Kathryn E. Nedrow, Jessie R. Novelli, Enrico M. Anderson, Carolyn J. Tavakoli, Sina Targeted imaging of very late antigen-4 for noninvasive assessment of lung inflammation-fibrosis axis |
title | Targeted imaging of very late antigen-4 for noninvasive assessment of lung inflammation-fibrosis axis |
title_full | Targeted imaging of very late antigen-4 for noninvasive assessment of lung inflammation-fibrosis axis |
title_fullStr | Targeted imaging of very late antigen-4 for noninvasive assessment of lung inflammation-fibrosis axis |
title_full_unstemmed | Targeted imaging of very late antigen-4 for noninvasive assessment of lung inflammation-fibrosis axis |
title_short | Targeted imaging of very late antigen-4 for noninvasive assessment of lung inflammation-fibrosis axis |
title_sort | targeted imaging of very late antigen-4 for noninvasive assessment of lung inflammation-fibrosis axis |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240482/ https://www.ncbi.nlm.nih.gov/pubmed/37273103 http://dx.doi.org/10.1186/s13550-023-01006-0 |
work_keys_str_mv | AT zhuqin targetedimagingofverylateantigen4fornoninvasiveassessmentoflunginflammationfibrosisaxis AT barnesclaytone targetedimagingofverylateantigen4fornoninvasiveassessmentoflunginflammationfibrosisaxis AT mannesphilipz targetedimagingofverylateantigen4fornoninvasiveassessmentoflunginflammationfibrosisaxis AT latochejosephd targetedimagingofverylateantigen4fornoninvasiveassessmentoflunginflammationfibrosisaxis AT daykathryne targetedimagingofverylateantigen4fornoninvasiveassessmentoflunginflammationfibrosisaxis AT nedrowjessier targetedimagingofverylateantigen4fornoninvasiveassessmentoflunginflammationfibrosisaxis AT novellienricom targetedimagingofverylateantigen4fornoninvasiveassessmentoflunginflammationfibrosisaxis AT andersoncarolynj targetedimagingofverylateantigen4fornoninvasiveassessmentoflunginflammationfibrosisaxis AT tavakolisina targetedimagingofverylateantigen4fornoninvasiveassessmentoflunginflammationfibrosisaxis |