Cargando…
Recent progress of emitting long-wavelength carbon dots and their merits for visualization tracking, target delivery and theranostics
As a novel strategy for in vivo visualization tracking and monitoring, carbon dots (CDs) emitting long wavelengths (LW, 600-950 nm) have received tremendous attention due to their deep tissue penetration, low photon scattering, satisfactory contrast resolution and high signal-to-background ratios. A...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240821/ https://www.ncbi.nlm.nih.gov/pubmed/37284447 http://dx.doi.org/10.7150/thno.80579 |
_version_ | 1785053856917356544 |
---|---|
author | Li, Chao Huang, Jiamin Yuan, Liwen Xie, Wenqing Ying, Yupeng Li, Chengzhe Yu, Yahang Pan, Yuanhu Qu, Wei Hao, Haihong Algharib, Samah Attia Chen, Dongmei Xie, Shuyu |
author_facet | Li, Chao Huang, Jiamin Yuan, Liwen Xie, Wenqing Ying, Yupeng Li, Chengzhe Yu, Yahang Pan, Yuanhu Qu, Wei Hao, Haihong Algharib, Samah Attia Chen, Dongmei Xie, Shuyu |
author_sort | Li, Chao |
collection | PubMed |
description | As a novel strategy for in vivo visualization tracking and monitoring, carbon dots (CDs) emitting long wavelengths (LW, 600-950 nm) have received tremendous attention due to their deep tissue penetration, low photon scattering, satisfactory contrast resolution and high signal-to-background ratios. Although, the mechanism of CDs emitting LW remains controversial and what properties are best for in vivo visualization have not been specifically elucidated, it is more conducive to the in vivo application of LW-CDs through rational design and ingenious synthesis based on the appreciation of the luminescence mechanism. Therefore, this review analyzes the current tracer technologies applied in vivo and their advantages and disadvantages, with emphasis on the physical mechanism of emitting LW fluorescence for in vivo imaging. Subsequently, the general properties and merits of LW-CDs for tracking and imaging are summarized. More importantly, the factors affecting the synthesis of LW-CDs and its luminescence mechanism are highlighted. Simultaneously, the application of LW-CDs for disease diagnosis, integration of diagnosis and therapy are summarized. Finally, the bottlenecks and possible future directions of LW-CDs in visualization tracking and imaging in vivo are detailly discussed. |
format | Online Article Text |
id | pubmed-10240821 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-102408212023-06-06 Recent progress of emitting long-wavelength carbon dots and their merits for visualization tracking, target delivery and theranostics Li, Chao Huang, Jiamin Yuan, Liwen Xie, Wenqing Ying, Yupeng Li, Chengzhe Yu, Yahang Pan, Yuanhu Qu, Wei Hao, Haihong Algharib, Samah Attia Chen, Dongmei Xie, Shuyu Theranostics Review As a novel strategy for in vivo visualization tracking and monitoring, carbon dots (CDs) emitting long wavelengths (LW, 600-950 nm) have received tremendous attention due to their deep tissue penetration, low photon scattering, satisfactory contrast resolution and high signal-to-background ratios. Although, the mechanism of CDs emitting LW remains controversial and what properties are best for in vivo visualization have not been specifically elucidated, it is more conducive to the in vivo application of LW-CDs through rational design and ingenious synthesis based on the appreciation of the luminescence mechanism. Therefore, this review analyzes the current tracer technologies applied in vivo and their advantages and disadvantages, with emphasis on the physical mechanism of emitting LW fluorescence for in vivo imaging. Subsequently, the general properties and merits of LW-CDs for tracking and imaging are summarized. More importantly, the factors affecting the synthesis of LW-CDs and its luminescence mechanism are highlighted. Simultaneously, the application of LW-CDs for disease diagnosis, integration of diagnosis and therapy are summarized. Finally, the bottlenecks and possible future directions of LW-CDs in visualization tracking and imaging in vivo are detailly discussed. Ivyspring International Publisher 2023-05-21 /pmc/articles/PMC10240821/ /pubmed/37284447 http://dx.doi.org/10.7150/thno.80579 Text en © The author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Review Li, Chao Huang, Jiamin Yuan, Liwen Xie, Wenqing Ying, Yupeng Li, Chengzhe Yu, Yahang Pan, Yuanhu Qu, Wei Hao, Haihong Algharib, Samah Attia Chen, Dongmei Xie, Shuyu Recent progress of emitting long-wavelength carbon dots and their merits for visualization tracking, target delivery and theranostics |
title | Recent progress of emitting long-wavelength carbon dots and their merits for visualization tracking, target delivery and theranostics |
title_full | Recent progress of emitting long-wavelength carbon dots and their merits for visualization tracking, target delivery and theranostics |
title_fullStr | Recent progress of emitting long-wavelength carbon dots and their merits for visualization tracking, target delivery and theranostics |
title_full_unstemmed | Recent progress of emitting long-wavelength carbon dots and their merits for visualization tracking, target delivery and theranostics |
title_short | Recent progress of emitting long-wavelength carbon dots and their merits for visualization tracking, target delivery and theranostics |
title_sort | recent progress of emitting long-wavelength carbon dots and their merits for visualization tracking, target delivery and theranostics |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240821/ https://www.ncbi.nlm.nih.gov/pubmed/37284447 http://dx.doi.org/10.7150/thno.80579 |
work_keys_str_mv | AT lichao recentprogressofemittinglongwavelengthcarbondotsandtheirmeritsforvisualizationtrackingtargetdeliveryandtheranostics AT huangjiamin recentprogressofemittinglongwavelengthcarbondotsandtheirmeritsforvisualizationtrackingtargetdeliveryandtheranostics AT yuanliwen recentprogressofemittinglongwavelengthcarbondotsandtheirmeritsforvisualizationtrackingtargetdeliveryandtheranostics AT xiewenqing recentprogressofemittinglongwavelengthcarbondotsandtheirmeritsforvisualizationtrackingtargetdeliveryandtheranostics AT yingyupeng recentprogressofemittinglongwavelengthcarbondotsandtheirmeritsforvisualizationtrackingtargetdeliveryandtheranostics AT lichengzhe recentprogressofemittinglongwavelengthcarbondotsandtheirmeritsforvisualizationtrackingtargetdeliveryandtheranostics AT yuyahang recentprogressofemittinglongwavelengthcarbondotsandtheirmeritsforvisualizationtrackingtargetdeliveryandtheranostics AT panyuanhu recentprogressofemittinglongwavelengthcarbondotsandtheirmeritsforvisualizationtrackingtargetdeliveryandtheranostics AT quwei recentprogressofemittinglongwavelengthcarbondotsandtheirmeritsforvisualizationtrackingtargetdeliveryandtheranostics AT haohaihong recentprogressofemittinglongwavelengthcarbondotsandtheirmeritsforvisualizationtrackingtargetdeliveryandtheranostics AT algharibsamahattia recentprogressofemittinglongwavelengthcarbondotsandtheirmeritsforvisualizationtrackingtargetdeliveryandtheranostics AT chendongmei recentprogressofemittinglongwavelengthcarbondotsandtheirmeritsforvisualizationtrackingtargetdeliveryandtheranostics AT xieshuyu recentprogressofemittinglongwavelengthcarbondotsandtheirmeritsforvisualizationtrackingtargetdeliveryandtheranostics |