Cargando…

High-density genetic mapping of Fusarium head blight resistance and agronomic traits in spring wheat

Fusarium head blight (FHB) has rapidly become a major challenge to successful wheat production and competitive end-use quality in western Canada. Continuous effort is required to develop germplasm with improved FHB resistance and understand how to incorporate the material into crossing schemes for m...

Descripción completa

Detalles Bibliográficos
Autores principales: Berraies, Samia, Cuthbert, Richard, Knox, Ron, Singh, Arti, DePauw, Ron, Ruan, Yuefeng, Bokore, Firdissa, Henriquez, Maria Antonia, Kumar, Santosh, Burt, Andrew, Pozniak, Curtis, N’Diaye, Amidou, Meyer, Brad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241073/
https://www.ncbi.nlm.nih.gov/pubmed/37284725
http://dx.doi.org/10.3389/fpls.2023.1134132
_version_ 1785053905280827392
author Berraies, Samia
Cuthbert, Richard
Knox, Ron
Singh, Arti
DePauw, Ron
Ruan, Yuefeng
Bokore, Firdissa
Henriquez, Maria Antonia
Kumar, Santosh
Burt, Andrew
Pozniak, Curtis
N’Diaye, Amidou
Meyer, Brad
author_facet Berraies, Samia
Cuthbert, Richard
Knox, Ron
Singh, Arti
DePauw, Ron
Ruan, Yuefeng
Bokore, Firdissa
Henriquez, Maria Antonia
Kumar, Santosh
Burt, Andrew
Pozniak, Curtis
N’Diaye, Amidou
Meyer, Brad
author_sort Berraies, Samia
collection PubMed
description Fusarium head blight (FHB) has rapidly become a major challenge to successful wheat production and competitive end-use quality in western Canada. Continuous effort is required to develop germplasm with improved FHB resistance and understand how to incorporate the material into crossing schemes for marker-assisted selection and genomic selection. The aim of this study was to map quantitative trait loci (QTL) responsible for the expression of FHB resistance in two adapted cultivars and to evaluate their co-localization with plant height, days to maturity, days to heading, and awnedness. A large doubled haploid population of 775 lines developed from cultivars Carberry and AC Cadillac was assessed for FHB incidence and severity in nurseries near Portage la Prairie, Brandon, and Morden in different years, and for plant height, awnedness, days to heading, and days to maturity near Swift Current. An initial linkage map using a subset of 261 lines was constructed using 634 polymorphic DArT and SSR markers. QTL analysis revealed five resistance QTL on chromosomes 2A, 3B (two loci), 4B, and 5A. A second genetic map with increased marker density was constructed using the Infinium iSelect 90k SNP wheat array in addition to the previous DArT and SSR markers, which revealed two additional QTL on 6A and 6D. The complete population was genotyped, and a total of 6,806 Infinium iSelect 90k SNP polymorphic markers were used to identify 17 putative resistance QTL on 14 different chromosomes. As with the smaller population size and fewer markers, large-effect QTL were detected on 3B, 4B, and 5A that were consistently expressed across environments. FHB resistance QTL were co-localized with plant height QTL on chromosomes 4B, 6D, and 7D; days to heading on 2B, 3A, 4A, 4B, and 5A; and maturity on 3A, 4B, and 7D. A major QTL for awnedness was identified as being associated with FHB resistance on chromosome 5A. Nine small-effect QTL were not associated with any of the agronomic traits, whereas 13 QTL that were associated with agronomic traits did not co-localize with any of the FHB traits. There is an opportunity to select for improved FHB resistance within adapted cultivars by using markers associated with complementary QTL.
format Online
Article
Text
id pubmed-10241073
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-102410732023-06-06 High-density genetic mapping of Fusarium head blight resistance and agronomic traits in spring wheat Berraies, Samia Cuthbert, Richard Knox, Ron Singh, Arti DePauw, Ron Ruan, Yuefeng Bokore, Firdissa Henriquez, Maria Antonia Kumar, Santosh Burt, Andrew Pozniak, Curtis N’Diaye, Amidou Meyer, Brad Front Plant Sci Plant Science Fusarium head blight (FHB) has rapidly become a major challenge to successful wheat production and competitive end-use quality in western Canada. Continuous effort is required to develop germplasm with improved FHB resistance and understand how to incorporate the material into crossing schemes for marker-assisted selection and genomic selection. The aim of this study was to map quantitative trait loci (QTL) responsible for the expression of FHB resistance in two adapted cultivars and to evaluate their co-localization with plant height, days to maturity, days to heading, and awnedness. A large doubled haploid population of 775 lines developed from cultivars Carberry and AC Cadillac was assessed for FHB incidence and severity in nurseries near Portage la Prairie, Brandon, and Morden in different years, and for plant height, awnedness, days to heading, and days to maturity near Swift Current. An initial linkage map using a subset of 261 lines was constructed using 634 polymorphic DArT and SSR markers. QTL analysis revealed five resistance QTL on chromosomes 2A, 3B (two loci), 4B, and 5A. A second genetic map with increased marker density was constructed using the Infinium iSelect 90k SNP wheat array in addition to the previous DArT and SSR markers, which revealed two additional QTL on 6A and 6D. The complete population was genotyped, and a total of 6,806 Infinium iSelect 90k SNP polymorphic markers were used to identify 17 putative resistance QTL on 14 different chromosomes. As with the smaller population size and fewer markers, large-effect QTL were detected on 3B, 4B, and 5A that were consistently expressed across environments. FHB resistance QTL were co-localized with plant height QTL on chromosomes 4B, 6D, and 7D; days to heading on 2B, 3A, 4A, 4B, and 5A; and maturity on 3A, 4B, and 7D. A major QTL for awnedness was identified as being associated with FHB resistance on chromosome 5A. Nine small-effect QTL were not associated with any of the agronomic traits, whereas 13 QTL that were associated with agronomic traits did not co-localize with any of the FHB traits. There is an opportunity to select for improved FHB resistance within adapted cultivars by using markers associated with complementary QTL. Frontiers Media S.A. 2023-05-10 /pmc/articles/PMC10241073/ /pubmed/37284725 http://dx.doi.org/10.3389/fpls.2023.1134132 Text en © 2023 Arti Singh, Ron DePauw, Curtis J. Pozniak, Amidou N’Diaye and His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada for the contribution of Samia Berraies, Richard D. Cuthbert, Ron E. Knox, Yuefeng Ruan, Firdissa E. Bokore, Maria Antonia Henriquez, Santosh Kumar, Andrew James Burt, Brad Meyer https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Berraies, Samia
Cuthbert, Richard
Knox, Ron
Singh, Arti
DePauw, Ron
Ruan, Yuefeng
Bokore, Firdissa
Henriquez, Maria Antonia
Kumar, Santosh
Burt, Andrew
Pozniak, Curtis
N’Diaye, Amidou
Meyer, Brad
High-density genetic mapping of Fusarium head blight resistance and agronomic traits in spring wheat
title High-density genetic mapping of Fusarium head blight resistance and agronomic traits in spring wheat
title_full High-density genetic mapping of Fusarium head blight resistance and agronomic traits in spring wheat
title_fullStr High-density genetic mapping of Fusarium head blight resistance and agronomic traits in spring wheat
title_full_unstemmed High-density genetic mapping of Fusarium head blight resistance and agronomic traits in spring wheat
title_short High-density genetic mapping of Fusarium head blight resistance and agronomic traits in spring wheat
title_sort high-density genetic mapping of fusarium head blight resistance and agronomic traits in spring wheat
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241073/
https://www.ncbi.nlm.nih.gov/pubmed/37284725
http://dx.doi.org/10.3389/fpls.2023.1134132
work_keys_str_mv AT berraiessamia highdensitygeneticmappingoffusariumheadblightresistanceandagronomictraitsinspringwheat
AT cuthbertrichard highdensitygeneticmappingoffusariumheadblightresistanceandagronomictraitsinspringwheat
AT knoxron highdensitygeneticmappingoffusariumheadblightresistanceandagronomictraitsinspringwheat
AT singharti highdensitygeneticmappingoffusariumheadblightresistanceandagronomictraitsinspringwheat
AT depauwron highdensitygeneticmappingoffusariumheadblightresistanceandagronomictraitsinspringwheat
AT ruanyuefeng highdensitygeneticmappingoffusariumheadblightresistanceandagronomictraitsinspringwheat
AT bokorefirdissa highdensitygeneticmappingoffusariumheadblightresistanceandagronomictraitsinspringwheat
AT henriquezmariaantonia highdensitygeneticmappingoffusariumheadblightresistanceandagronomictraitsinspringwheat
AT kumarsantosh highdensitygeneticmappingoffusariumheadblightresistanceandagronomictraitsinspringwheat
AT burtandrew highdensitygeneticmappingoffusariumheadblightresistanceandagronomictraitsinspringwheat
AT pozniakcurtis highdensitygeneticmappingoffusariumheadblightresistanceandagronomictraitsinspringwheat
AT ndiayeamidou highdensitygeneticmappingoffusariumheadblightresistanceandagronomictraitsinspringwheat
AT meyerbrad highdensitygeneticmappingoffusariumheadblightresistanceandagronomictraitsinspringwheat