Cargando…

Ginsenoside Rg1 regulates autophagy and endoplasmic reticulum stress via the AMPK/mTOR and PERK/ATF4/CHOP pathways to alleviate alcohol-induced myocardial injury

It has been reported that ginsenoside Rg1 (G-Rg1) can alleviate alcoholic liver injury, cardiac hypertrophy and myocardial ischemia, as well as reperfusion injury. Therefore, the present study aimed to investigate the role of G-Rg1 in alcohol-induced myocardial injury, as well as to elucidate its un...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Ge, Li, Jing, Zhou, Lina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241156/
https://www.ncbi.nlm.nih.gov/pubmed/37232350
http://dx.doi.org/10.3892/ijmm.2023.5259
_version_ 1785053925129322496
author Tian, Ge
Li, Jing
Zhou, Lina
author_facet Tian, Ge
Li, Jing
Zhou, Lina
author_sort Tian, Ge
collection PubMed
description It has been reported that ginsenoside Rg1 (G-Rg1) can alleviate alcoholic liver injury, cardiac hypertrophy and myocardial ischemia, as well as reperfusion injury. Therefore, the present study aimed to investigate the role of G-Rg1 in alcohol-induced myocardial injury, as well as to elucidate its underlying mechanisms of action. For this purpose, H9c2 cells were stimulated with ethanol. Subsequently, H9c2 cell viability and apoptosis were determined using a Cell Counting Kit-8 assay and flow cytometric analysis, respectively. The levels of lactate dehydrogenase and caspase-3 in the H9c2 cell culture supernatant were detected using corresponding assay kits. In addition, the expression of green fluorescent protein (GFP)-light chain 3 (LC3) and that of C/EBP homologous protein (CHOP) were evaluated using GFP-LC3 assay and immunofluorescence staining, respectively. The expression levels of apoptosis-, autophagy-, endoplasmic reticulum stress (ERS)- and adenosine 5′-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway-related proteins were detected using western blot analysis. The results revealed that treatment with G-Rg1 enhanced the viability and suppressed the apoptosis of ethanol-stimulated H9c2 cells. G-Rg1 also attenuated autophagy and ERS in ethanol-stimulated H9c2 cells. In addition, the levels of phosphorylated (p)-protein kinase R (PKR)-like ER kinase (PERK), p-eukaryotic translation initiation factor 2a, activating transcription factor 4 (ATF4), CHOP, caspase-12 and p-AMPK were downregulated, while the p-mTOR level was upregulated in ethanol-stimulated H9c2 cells treated with G-Rg1. Furthermore, the co-treatment of G-Rg1-treated ethanol-stimulated H9c2 cells with AICAR, an AMPK agonist, or CCT020312, a PERK agonist, inhibited cell viability and promoted cell apoptosis, autophagy and ERS. Overall, the results of the present study suggest that G-Rg1 suppresses autophagy and ERS via inhibiting the AMPK/mTOR and PERK/ATF4/CHOP pathways to alleviate ethanol-induced H9c2 cell injury.
format Online
Article
Text
id pubmed-10241156
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-102411562023-06-06 Ginsenoside Rg1 regulates autophagy and endoplasmic reticulum stress via the AMPK/mTOR and PERK/ATF4/CHOP pathways to alleviate alcohol-induced myocardial injury Tian, Ge Li, Jing Zhou, Lina Int J Mol Med Articles It has been reported that ginsenoside Rg1 (G-Rg1) can alleviate alcoholic liver injury, cardiac hypertrophy and myocardial ischemia, as well as reperfusion injury. Therefore, the present study aimed to investigate the role of G-Rg1 in alcohol-induced myocardial injury, as well as to elucidate its underlying mechanisms of action. For this purpose, H9c2 cells were stimulated with ethanol. Subsequently, H9c2 cell viability and apoptosis were determined using a Cell Counting Kit-8 assay and flow cytometric analysis, respectively. The levels of lactate dehydrogenase and caspase-3 in the H9c2 cell culture supernatant were detected using corresponding assay kits. In addition, the expression of green fluorescent protein (GFP)-light chain 3 (LC3) and that of C/EBP homologous protein (CHOP) were evaluated using GFP-LC3 assay and immunofluorescence staining, respectively. The expression levels of apoptosis-, autophagy-, endoplasmic reticulum stress (ERS)- and adenosine 5′-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway-related proteins were detected using western blot analysis. The results revealed that treatment with G-Rg1 enhanced the viability and suppressed the apoptosis of ethanol-stimulated H9c2 cells. G-Rg1 also attenuated autophagy and ERS in ethanol-stimulated H9c2 cells. In addition, the levels of phosphorylated (p)-protein kinase R (PKR)-like ER kinase (PERK), p-eukaryotic translation initiation factor 2a, activating transcription factor 4 (ATF4), CHOP, caspase-12 and p-AMPK were downregulated, while the p-mTOR level was upregulated in ethanol-stimulated H9c2 cells treated with G-Rg1. Furthermore, the co-treatment of G-Rg1-treated ethanol-stimulated H9c2 cells with AICAR, an AMPK agonist, or CCT020312, a PERK agonist, inhibited cell viability and promoted cell apoptosis, autophagy and ERS. Overall, the results of the present study suggest that G-Rg1 suppresses autophagy and ERS via inhibiting the AMPK/mTOR and PERK/ATF4/CHOP pathways to alleviate ethanol-induced H9c2 cell injury. D.A. Spandidos 2023-05-23 /pmc/articles/PMC10241156/ /pubmed/37232350 http://dx.doi.org/10.3892/ijmm.2023.5259 Text en Copyright: © Tian et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Tian, Ge
Li, Jing
Zhou, Lina
Ginsenoside Rg1 regulates autophagy and endoplasmic reticulum stress via the AMPK/mTOR and PERK/ATF4/CHOP pathways to alleviate alcohol-induced myocardial injury
title Ginsenoside Rg1 regulates autophagy and endoplasmic reticulum stress via the AMPK/mTOR and PERK/ATF4/CHOP pathways to alleviate alcohol-induced myocardial injury
title_full Ginsenoside Rg1 regulates autophagy and endoplasmic reticulum stress via the AMPK/mTOR and PERK/ATF4/CHOP pathways to alleviate alcohol-induced myocardial injury
title_fullStr Ginsenoside Rg1 regulates autophagy and endoplasmic reticulum stress via the AMPK/mTOR and PERK/ATF4/CHOP pathways to alleviate alcohol-induced myocardial injury
title_full_unstemmed Ginsenoside Rg1 regulates autophagy and endoplasmic reticulum stress via the AMPK/mTOR and PERK/ATF4/CHOP pathways to alleviate alcohol-induced myocardial injury
title_short Ginsenoside Rg1 regulates autophagy and endoplasmic reticulum stress via the AMPK/mTOR and PERK/ATF4/CHOP pathways to alleviate alcohol-induced myocardial injury
title_sort ginsenoside rg1 regulates autophagy and endoplasmic reticulum stress via the ampk/mtor and perk/atf4/chop pathways to alleviate alcohol-induced myocardial injury
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241156/
https://www.ncbi.nlm.nih.gov/pubmed/37232350
http://dx.doi.org/10.3892/ijmm.2023.5259
work_keys_str_mv AT tiange ginsenosiderg1regulatesautophagyandendoplasmicreticulumstressviatheampkmtorandperkatf4choppathwaystoalleviatealcoholinducedmyocardialinjury
AT lijing ginsenosiderg1regulatesautophagyandendoplasmicreticulumstressviatheampkmtorandperkatf4choppathwaystoalleviatealcoholinducedmyocardialinjury
AT zhoulina ginsenosiderg1regulatesautophagyandendoplasmicreticulumstressviatheampkmtorandperkatf4choppathwaystoalleviatealcoholinducedmyocardialinjury