Cargando…
An attention-based context-informed deep framework for infant brain subcortical segmentation
Precise segmentation of subcortical structures from infant brain magnetic resonance (MR) images plays an essential role in studying early subcortical structural and functional developmental patterns and diagnosis of related brain disorders. However, due to the dynamic appearance changes, low tissue...
Autores principales: | Chen, Liangjun, Wu, Zhengwang, Zhao, Fenqiang, Wang, Ya, Lin, Weili, Wang, Li, Li, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241225/ https://www.ncbi.nlm.nih.gov/pubmed/36746299 http://dx.doi.org/10.1016/j.neuroimage.2023.119931 |
Ejemplares similares
-
A 4D infant brain volumetric atlas based on the UNC/UMN baby connectome project (BCP) cohort
por: Chen, Liangjun, et al.
Publicado: (2022) -
Four-dimensional mapping of dynamic longitudinal brain subcortical development and early learning functions in infants
por: Chen, Liangjun, et al.
Publicado: (2023) -
Fine-grained functional parcellation maps of the infant cerebral cortex
por: Wang, Fan, et al.
Publicado: (2023) -
Self-supervised learning with application for infant cerebellum segmentation and analysis
por: Sun, Yue, et al.
Publicado: (2023) -
A deep learning toolbox for automatic segmentation of subcortical limbic structures from MRI images
por: Greve, Douglas N., et al.
Publicado: (2021)