Cargando…

A parasite DNA binding protein with potential to influence disease susceptibility acts as an analogue of mammalian HMGA transcription factors

Intracellular pathogens construct their environmental niche, and influence disease susceptibility, by deploying factors that manipulate infected host cell gene expression. Theileria annulata is an important tick-borne parasite of cattle that causes tropical theileriosis. Excellent candidates for mod...

Descripción completa

Detalles Bibliográficos
Autores principales: Durrani, Zeeshan, Kinnaird, Jane, Cheng, Chew Weng, Brühlmann, Francis, Capewell, Paul, Jackson, Andrew, Larcombe, Stephen, Olias, Philipp, Weir, William, Shiels, Brian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241358/
https://www.ncbi.nlm.nih.gov/pubmed/37276213
http://dx.doi.org/10.1371/journal.pone.0286526
Descripción
Sumario:Intracellular pathogens construct their environmental niche, and influence disease susceptibility, by deploying factors that manipulate infected host cell gene expression. Theileria annulata is an important tick-borne parasite of cattle that causes tropical theileriosis. Excellent candidates for modulating host cell gene expression are DNA binding proteins bearing AT-hook motifs encoded within the TashAT gene cluster of the parasite genome. In this study, TashAT2 was transfected into bovine BoMac cells to generate three expressing and three non-expressing (opposite orientation) cell lines. RNA-Seq was conducted and differentially expressed (DE) genes identified. The resulting dataset was compared with genes differentially expressed between infected cells and non-infected cells, and DE genes between infected cell lines from susceptible Holstein vs tolerant Sahiwal cattle. Over 800 bovine genes displayed differential expression associated with TashAT2, 209 of which were also modulated by parasite infection. Network analysis showed enrichment of DE genes in pathways associated with cellular adhesion, oncogenesis and developmental regulation by mammalian AT-hook bearing high mobility group A (HMGA) proteins. Overlap of TashAT2 DE genes with Sahiwal vs Holstein DE genes revealed that a significant number of shared genes were associated with disease susceptibility. Altered protein levels encoded by one of these genes (GULP1) was strongly linked to expression of TashAT2 in BoMac cells and was demonstrated to be higher in infected Holstein leucocytes compared to Sahiwal. We conclude that TashAT2 operates as an HMGA analogue to differentially mould the epigenome of the infected cell and influence disease susceptibility.