Cargando…
Topic sentiment analysis based on deep neural network using document embedding technique
Sentiment Analysis (SA) is a domain- or topic-dependent task since polarity terms convey different sentiments in various domains. Hence, machine learning models trained on a specific domain cannot be employed in other domains, and existing domain-independent lexicons cannot correctly recognize the p...
Autores principales: | Seilsepour, Azam, Ravanmehr, Reza, Nassiri, Ramin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241384/ https://www.ncbi.nlm.nih.gov/pubmed/37359345 http://dx.doi.org/10.1007/s11227-023-05423-9 |
Ejemplares similares
-
Inductive Document Network Embedding with Topic-Word Attention
por: Brochier, Robin, et al.
Publicado: (2020) -
Embedding knowledge on ontology into the corpus by topic to improve the performance of deep learning methods in sentiment analysis
por: Nguyen, Duy Ngoc, et al.
Publicado: (2021) -
Deep Neural Networks Applied to Stock Market Sentiment Analysis
por: Correia, Filipe, et al.
Publicado: (2022) -
Modified term frequency-inverse document frequency based deep hybrid framework for sentiment analysis
por: Dey, Ranit Kumar, et al.
Publicado: (2023) -
A novel LSTM–CNN–grid search-based deep neural network for sentiment analysis
por: Priyadarshini, Ishaani, et al.
Publicado: (2021)