Cargando…

Adaptive Optimal Control of Hybrid Electric Vehicle Power Battery via Policy Learning

An online policy learning algorithm is used to solve the optimal control problem of the power battery state of charge (SOC) observer for the first time. The design of adaptive neural network (NN) optimal control is studied for the nonlinear power battery system based on a second-order (RC) equivalen...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Qinglin, Sun, Huanli, Zhao, Ziliang, Liu, Yixin, Zhao, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241567/
https://www.ncbi.nlm.nih.gov/pubmed/37284055
http://dx.doi.org/10.1155/2023/8288527
Descripción
Sumario:An online policy learning algorithm is used to solve the optimal control problem of the power battery state of charge (SOC) observer for the first time. The design of adaptive neural network (NN) optimal control is studied for the nonlinear power battery system based on a second-order (RC) equivalent circuit model. First, the unknown uncertainties of the system are approximated by NN, and a time-varying gain nonlinear state observer is designed to address the problem that the resistance capacitance voltage and SOC of the battery cannot be measured. Then, to realize the optimal control, a policy learning-based online algorithm is designed, where only the critic NN is required and the actor NN widely used in most design of the optimal control methods is removed. Finally, the effectiveness of the optimal control theory is verified by simulation.