Cargando…
Adaptive Optimal Control of Hybrid Electric Vehicle Power Battery via Policy Learning
An online policy learning algorithm is used to solve the optimal control problem of the power battery state of charge (SOC) observer for the first time. The design of adaptive neural network (NN) optimal control is studied for the nonlinear power battery system based on a second-order (RC) equivalen...
Autores principales: | Zhu, Qinglin, Sun, Huanli, Zhao, Ziliang, Liu, Yixin, Zhao, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241567/ https://www.ncbi.nlm.nih.gov/pubmed/37284055 http://dx.doi.org/10.1155/2023/8288527 |
Ejemplares similares
-
Towards interactional management for power batteries of electric vehicles
por: He, Rong, et al.
Publicado: (2023) -
Robust Optimization and Power Management of a Triple Junction Photovoltaic Electric Vehicle with Battery Storage
por: Hamed, Salah Beni, et al.
Publicado: (2022) -
Comprehensive assessment for different ranges of battery electric vehicles: Is it necessary to develop an ultra-long range battery electric vehicle?
por: Liu, Xinglong, et al.
Publicado: (2023) -
Advanced hybrid and electric vehicles: system optimization and vehicle integration
por: Nikowitz, Michael
Publicado: (2016) -
Electric vehicle battery systems
por: Dhameja, Sandeep
Publicado: (2002)