Cargando…
Learning Optimal Solutions via an LSTM-Optimization Framework
In this study, we present a deep learning-optimization framework to tackle dynamic mixed-integer programs. Specifically, we develop a bidirectional Long Short Term Memory (LSTM) framework that can process information forward and backward in time to learn optimal solutions to sequential decision-maki...
Autores principales: | Yilmaz, Dogacan, Büyüktahtakın, İ. Esra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241613/ http://dx.doi.org/10.1007/s43069-023-00224-5 |
Ejemplares similares
-
A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization
por: Bushaj, Sabah, et al.
Publicado: (2022) -
COVID-19: Data-Driven optimal allocation of ventilator supply under uncertainty and risk
por: Yin, Xuecheng, et al.
Publicado: (2023) -
Performance Degradation Prediction Using LSTM with Optimized Parameters
por: Hu, Yawei, et al.
Publicado: (2022) -
Incremental learning of LSTM framework for sensor fusion in attitude estimation
por: Narkhede, Parag, et al.
Publicado: (2021) -
Snake optimizer LSTM-based UWB positioning method for unmanned crane
por: Wang, Li, et al.
Publicado: (2023)