Cargando…
Characterization of two lytic bacteriophages, infecting Streptococcus bovis/equinus complex (SBSEC) from Korean ruminant
Streptococcus bovis/equinus complex (SBSEC) is one of the most important lactic acid-producing rumen bacteria causing subacute ruminal acidosis. Despite the significance of the ruminal bacteria, lytic bacteriophages (phages) capable of infecting SBSEC in the rumen have been rarely characterized. Hen...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241823/ https://www.ncbi.nlm.nih.gov/pubmed/37277552 http://dx.doi.org/10.1038/s41598-023-36306-x |
Sumario: | Streptococcus bovis/equinus complex (SBSEC) is one of the most important lactic acid-producing rumen bacteria causing subacute ruminal acidosis. Despite the significance of the ruminal bacteria, lytic bacteriophages (phages) capable of infecting SBSEC in the rumen have been rarely characterized. Hence, we describe the biological and genomic characteristics of two lytic phages (designated as vB_SbRt-pBovineB21 and vB_SbRt-pBovineS21) infecting various SBSEC species, including the newly reported S. ruminicola. The isolated SBSEC phages were morphologically similar to Podoviridae and could infect other genera of lactic acid-producing bacteria, including Lactococcus and Lactobacillus. Additionally, they showed high thermal- and pH-stability, and those characteristics induce strong adaptation to the ruminal environment, such as the low pH found in subacute ruminal acidosis. Genome-based phylogeny revealed that both phages were related to Streptococcus phage C1 in the Fischettivirus. However, they had a lower nucleotide similarity and distinct genomic arrangements than phage C1. The phage bacteriolytic activity was evaluated using S. ruminicola, and the phages efficiently inhibited planktonic bacterial growth. Moreover, both phages could prevent bacterial biofilms of various SBSEC strains and other lactic acid-producing bacteria in vitro. Thus, the newly isolated two SBSEC phages were classified as new Fischettivirus members and could be considered as potential biocontrol agents against ruminal SBSEC bacteria and their biofilms. |
---|