Cargando…

Direct biomolecule discrimination in mixed samples using nanogap-based single-molecule electrical measurement

In single-molecule measurements, metal nanogap electrodes directly measure the current of a single molecule. This technique has been actively investigated as a new detection method for a variety of samples. Machine learning has been applied to analyze signals derived from single molecules to improve...

Descripción completa

Detalles Bibliográficos
Autores principales: Ryu, Jiho, Komoto, Yuki, Ohshiro, Takahito, Taniguchi, Masateru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241884/
https://www.ncbi.nlm.nih.gov/pubmed/37277540
http://dx.doi.org/10.1038/s41598-023-35724-1
Descripción
Sumario:In single-molecule measurements, metal nanogap electrodes directly measure the current of a single molecule. This technique has been actively investigated as a new detection method for a variety of samples. Machine learning has been applied to analyze signals derived from single molecules to improve the identification accuracy. However, conventional identification methods have drawbacks, such as the requirement of data to be measured for each target molecule and the electronic structure variation of the nanogap electrode. In this study, we report a technique for identifying molecules based on single-molecule measurement data measured only in mixed sample solutions. Compared with conventional methods that require training classifiers on measurement data from individual samples, our proposed method successfully predicts the mixing ratio from the measurement data in mixed solutions. This demonstrates the possibility of identifying single molecules using only data from mixed solutions, without prior training. This method is anticipated to be particularly useful for the analysis of biological samples in which chemical separation methods are not applicable, thereby increasing the potential for single-molecule measurements to be widely adopted as an analytical technique.