Cargando…
A flexible symbolic regression method for constructing interpretable clinical prediction models
Machine learning (ML) models trained for triggering clinical decision support (CDS) are typically either accurate or interpretable but not both. Scaling CDS to the panoply of clinical use cases while mitigating risks to patients will require many ML models be intuitively interpretable for clinicians...
Autores principales: | La Cava, William G., Lee, Paul C., Ajmal, Imran, Ding, Xiruo, Solanki, Priyanka, Cohen, Jordana B., Moore, Jason H., Herman, Daniel S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241925/ https://www.ncbi.nlm.nih.gov/pubmed/37277550 http://dx.doi.org/10.1038/s41746-023-00833-8 |
Ejemplares similares
-
Symbolic regression of generative network models
por: Menezes, Telmo, et al.
Publicado: (2014) -
AI Feynman: A physics-inspired method for symbolic regression
por: Udrescu, Silviu-Marian, et al.
Publicado: (2020) -
Regression Models for Symbolic Interval-Valued Variables
por: Chacón, Jose Emmanuel, et al.
Publicado: (2021) -
Symbolic Regression on FPGAs for Fast Machine Learning Inference
por: Tsoi, Ho Fung, et al.
Publicado: (2023) -
Application of the symbolic regression program AI-Feynman to psychology
por: Miyazaki, Masato, et al.
Publicado: (2023)