Cargando…
Deep learning phase error correction for cerebrovascular 4D flow MRI
Background phase errors in 4D Flow MRI may negatively impact blood flow quantification. In this study, we assessed their impact on cerebrovascular flow volume measurements, evaluated the benefit of manual image-based correction, and assessed the potential of a convolutional neural network (CNN), a f...
Autores principales: | Srinivas, Shanmukha, Masutani, Evan, Norbash, Alexander, Hsiao, Albert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241936/ https://www.ncbi.nlm.nih.gov/pubmed/37277401 http://dx.doi.org/10.1038/s41598-023-36061-z |
Ejemplares similares
-
A deep error correction network for compressed sensing MRI
por: Sun, Liyan, et al.
Publicado: (2020) -
Age-Related Reductions in Cerebrovascular Reactivity Using 4D Flow MRI
por: Miller, Kathleen B., et al.
Publicado: (2019) -
Fully-automated deep learning-based flow quantification of 2D CINE phase contrast MRI
por: Pradella, Maurice, et al.
Publicado: (2022) -
Deep learning–based velocity antialiasing of 4D‐flow MRI
por: Berhane, Haben, et al.
Publicado: (2022) -
Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data
por: Rutkowski, David R., et al.
Publicado: (2021)