Cargando…
A generalised deep learning-based surrogate model for homogenisation utilising material property encoding and physics-based bounds
The use of surrogate models based on Convolutional Neural Networks (CNN) is increasing significantly in microstructure analysis and property predictions. One of the shortcomings of the existing models is their limitation in feeding the material information. In this context, a simple method is develo...
Autores principales: | Nakka, Rajesh, Harursampath, Dineshkumar, Ponnusami, Sathiskumar A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241949/ https://www.ncbi.nlm.nih.gov/pubmed/37277405 http://dx.doi.org/10.1038/s41598-023-34823-3 |
Ejemplares similares
-
Exploiting nonlinearities through geometric engineering to enhance the auxetic behaviour in re-entrant honeycomb metamaterials
por: Srivastava, Chetna, et al.
Publicado: (2023) -
De-agglomeration and homogenisation of nanoparticles in coal tar pitch-based carbon materials
por: Gubernat, Maciej, et al.
Publicado: (2016) -
Graph-based homogenisation for modelling cardiac fibrosis
por: Farquhar, Megan E., et al.
Publicado: (2022) -
Effective Properties of Homogenised Nonlinear Viscoelastic Composites
por: Roque-Piedra, Alejandro, et al.
Publicado: (2023) -
From Steklov to Neumann via homogenisation
por: Girouard, Alexandre, et al.
Publicado: (2020)