Cargando…
FDM data driven U-Net as a 2D Laplace PINN solver
Efficient solution of partial differential equations (PDEs) of physical laws is of interest for manifold applications in computer science and image analysis. However, conventional domain discretization techniques for numerical solving PDEs such as Finite Difference (FDM), Finite Element (FEM) method...
Autores principales: | Maria Antony, Anto Nivin, Narisetti, Narendra, Gladilin, Evgeny |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241951/ https://www.ncbi.nlm.nih.gov/pubmed/37277366 http://dx.doi.org/10.1038/s41598-023-35531-8 |
Ejemplares similares
-
New Laplace and Helmholtz solvers
por: Gopal, Abinand, et al.
Publicado: (2019) -
Developments in RELAX3D, a 2D/3D Laplace and Poisson equation solver
por: Houtman, H, et al.
Publicado: (1992) -
Automated Spike Detection in Diverse European Wheat Plants Using Textural Features and the Frangi Filter in 2D Greenhouse Images
por: Narisetti, Narendra, et al.
Publicado: (2020) -
Dr. Vivian Pinn: a woman pioneer & leader
por: Bachmann, Gloria, et al.
Publicado: (2021) -
Deep Learning Based Greenhouse Image Segmentation and Shoot Phenotyping (DeepShoot)
por: Narisetti, Narendra, et al.
Publicado: (2022)