Cargando…
High-quality super-resolution mapping using spatial deep learning
Super-resolution mapping (SRM) is a critical technology in remote sensing. Recently, several deep learning models have been developed for SRM. Most of these models, however, only use a single stream to process remote sensing images and mainly focus on capturing spectral features. This can undermine...
Autores principales: | Zhang, Xining, Ge, Yong, Chen, Jin, Ling, Feng, Wang, Qunming, Du, Delin, Xiang, Ru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241974/ https://www.ncbi.nlm.nih.gov/pubmed/37288344 http://dx.doi.org/10.1016/j.isci.2023.106875 |
Ejemplares similares
-
Super-resolution of magnetic systems using deep learning
por: Lee, D. B., et al.
Publicado: (2023) -
Super‐resolution of brain tumor MRI images based on deep learning
por: Zhou, Zhiyi, et al.
Publicado: (2022) -
Advancing biological super-resolution microscopy through deep learning: a brief review
por: Yang, Tianjie, et al.
Publicado: (2021) -
Deep learning-based super-resolution in coherent imaging systems
por: Liu, Tairan, et al.
Publicado: (2019) -
Deep Unsupervised Fusion Learning for Hyperspectral Image Super Resolution
por: Liu, Zhe, et al.
Publicado: (2021)