Cargando…
A novel federated deep learning scheme for glioma and its subtype classification
BACKGROUND: Deep learning (DL) has shown promising results in molecular-based classification of glioma subtypes from MR images. DL requires a large number of training data for achieving good generalization performance. Since brain tumor datasets are usually small in size, combination of such dataset...
Autores principales: | Ali, Muhaddisa Barat, Gu, Irene Yu-Hua, Berger, Mitchel S., Jakola, Asgeir Store |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10242007/ https://www.ncbi.nlm.nih.gov/pubmed/37287799 http://dx.doi.org/10.3389/fnins.2023.1181703 |
Ejemplares similares
-
Prediction of glioma-subtypes: comparison of performance on a DL classifier using bounding box areas versus annotated tumors
por: Ali, Muhaddisa Barat, et al.
Publicado: (2022) -
Domain Mapping and Deep Learning from Multiple MRI Clinical Datasets for Prediction of Molecular Subtypes in Low Grade Gliomas
por: Ali, Muhaddisa Barat, et al.
Publicado: (2020) -
A Feasibility Study on Deep Learning Based Brain Tumor Segmentation Using 2D Ellipse Box Areas
por: Ali, Muhaddisa Barat, et al.
Publicado: (2022) -
Deep semi-supervised learning for brain tumor classification
por: Ge, Chenjie, et al.
Publicado: (2020) -
Seizures in patients with IDH-mutated lower grade gliomas
por: Carstam, Louise, et al.
Publicado: (2022)