Cargando…
Impacts of urban green infrastructure on attentional functioning: insights from an fMRI study
Multiple studies using various measures, technologies, and participant groups have found that exposure to urban green infrastructure can help alleviate the daily attentional fatigue that human experience. Although we have made significant progress in understanding the effects of exposure to urban gr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10242057/ https://www.ncbi.nlm.nih.gov/pubmed/37287788 http://dx.doi.org/10.3389/fpsyg.2023.1047993 |
_version_ | 1785054128173481984 |
---|---|
author | Jiang, Xiangrong Hu, Yifan Larsen, Linda Chang, Chun-Yen Sullivan, William C. |
author_facet | Jiang, Xiangrong Hu, Yifan Larsen, Linda Chang, Chun-Yen Sullivan, William C. |
author_sort | Jiang, Xiangrong |
collection | PubMed |
description | Multiple studies using various measures, technologies, and participant groups have found that exposure to urban green infrastructure can help alleviate the daily attentional fatigue that human experience. Although we have made significant progress in understanding the effects of exposure to urban green infrastructure on attention restoration, two important gaps in our knowledge remain. First, we do not fully understand the neural processes underlying attention restoration that exposure to urban green infrastructure elicits. Second, we are largely unaware of how typical patterns of urban green infrastructure, such as combinations of trees and bioswales, affect recovery from attentional fatigue. This knowledge is crucial to guide the design and management of urban landscapes that effectively facilitate attention restoration. To address these gaps in our knowledge, we conducted a controlled experiment in which 43 participants were randomly assigned to one of three video treatment categories: no green infrastructure (No GI), trees, or trees and bioswales. We assessed attentional functioning using functional Magnetic Resonance Imaging (fMRI) and the Sustained Attention Response Task (SART). Participants exposed to urban settings with trees exhibited improved top-down attentional functioning, as evidenced by both fMRI and SART results. Those exposed to urban settings with trees and bioswales demonstrated some attention-restorative neural activity, but without significant improvements in SART performance. Conversely, participants exposed to videos of urban environments without green infrastructure displayed increased neural vigilance, suggesting a lack of attention restoration, accompanied by reduced SART performance. These consistent findings offer empirical support for the Attention Restoration Theory, highlighting the effectiveness of tree exposure in enhancing attentional functioning. Future research should investigate the potential impact of bioswales on attention restoration. |
format | Online Article Text |
id | pubmed-10242057 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102420572023-06-07 Impacts of urban green infrastructure on attentional functioning: insights from an fMRI study Jiang, Xiangrong Hu, Yifan Larsen, Linda Chang, Chun-Yen Sullivan, William C. Front Psychol Psychology Multiple studies using various measures, technologies, and participant groups have found that exposure to urban green infrastructure can help alleviate the daily attentional fatigue that human experience. Although we have made significant progress in understanding the effects of exposure to urban green infrastructure on attention restoration, two important gaps in our knowledge remain. First, we do not fully understand the neural processes underlying attention restoration that exposure to urban green infrastructure elicits. Second, we are largely unaware of how typical patterns of urban green infrastructure, such as combinations of trees and bioswales, affect recovery from attentional fatigue. This knowledge is crucial to guide the design and management of urban landscapes that effectively facilitate attention restoration. To address these gaps in our knowledge, we conducted a controlled experiment in which 43 participants were randomly assigned to one of three video treatment categories: no green infrastructure (No GI), trees, or trees and bioswales. We assessed attentional functioning using functional Magnetic Resonance Imaging (fMRI) and the Sustained Attention Response Task (SART). Participants exposed to urban settings with trees exhibited improved top-down attentional functioning, as evidenced by both fMRI and SART results. Those exposed to urban settings with trees and bioswales demonstrated some attention-restorative neural activity, but without significant improvements in SART performance. Conversely, participants exposed to videos of urban environments without green infrastructure displayed increased neural vigilance, suggesting a lack of attention restoration, accompanied by reduced SART performance. These consistent findings offer empirical support for the Attention Restoration Theory, highlighting the effectiveness of tree exposure in enhancing attentional functioning. Future research should investigate the potential impact of bioswales on attention restoration. Frontiers Media S.A. 2023-05-23 /pmc/articles/PMC10242057/ /pubmed/37287788 http://dx.doi.org/10.3389/fpsyg.2023.1047993 Text en Copyright © 2023 Jiang, Hu, Larsen, Chang and Sullivan. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Psychology Jiang, Xiangrong Hu, Yifan Larsen, Linda Chang, Chun-Yen Sullivan, William C. Impacts of urban green infrastructure on attentional functioning: insights from an fMRI study |
title | Impacts of urban green infrastructure on attentional functioning: insights from an fMRI study |
title_full | Impacts of urban green infrastructure on attentional functioning: insights from an fMRI study |
title_fullStr | Impacts of urban green infrastructure on attentional functioning: insights from an fMRI study |
title_full_unstemmed | Impacts of urban green infrastructure on attentional functioning: insights from an fMRI study |
title_short | Impacts of urban green infrastructure on attentional functioning: insights from an fMRI study |
title_sort | impacts of urban green infrastructure on attentional functioning: insights from an fmri study |
topic | Psychology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10242057/ https://www.ncbi.nlm.nih.gov/pubmed/37287788 http://dx.doi.org/10.3389/fpsyg.2023.1047993 |
work_keys_str_mv | AT jiangxiangrong impactsofurbangreeninfrastructureonattentionalfunctioninginsightsfromanfmristudy AT huyifan impactsofurbangreeninfrastructureonattentionalfunctioninginsightsfromanfmristudy AT larsenlinda impactsofurbangreeninfrastructureonattentionalfunctioninginsightsfromanfmristudy AT changchunyen impactsofurbangreeninfrastructureonattentionalfunctioninginsightsfromanfmristudy AT sullivanwilliamc impactsofurbangreeninfrastructureonattentionalfunctioninginsightsfromanfmristudy |