Cargando…
Subject clustering by IF-PCA and several recent methods
Subject clustering (i.e., the use of measured features to cluster subjects, such as patients or cells, into multiple groups) is a problem of significant interest. In recent years, many approaches have been proposed, among which unsupervised deep learning (UDL) has received much attention. Two intere...
Autores principales: | Chen, Dieyi, Jin, Jiashun, Ke, Zheng Tracy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10242062/ https://www.ncbi.nlm.nih.gov/pubmed/37287536 http://dx.doi.org/10.3389/fgene.2023.1166404 |
Ejemplares similares
-
Joint Lp-Norm and L(2,1)-Norm Constrained Graph Laplacian PCA for Robust Tumor Sample Clustering and Gene Network Module Discovery
por: Kong, Xiang-Zhen, et al.
Publicado: (2021) -
LMO3 downregulation in PCa: A prospective biomarker associated with immune infiltration
por: Xu, Wenchao, et al.
Publicado: (2022) -
Dynamic Meta-data Network Sparse PCA for Cancer Subtype Biomarker Screening
por: Miao, Rui, et al.
Publicado: (2022) -
RobustTree: An adaptive, robust PCA algorithm for embedded tree structure recovery from single-cell sequencing data
por: Chen, Ziwei, et al.
Publicado: (2023) -
RF-PCA: A New Solution for Rapid Identification of Breast Cancer Categorical Data Based on Attribute Selection and Feature Extraction
por: Bian, Kai, et al.
Publicado: (2020)