Cargando…
Automatic semantic segmentation of the lumbar spine: Clinical applicability in a multi-parametric and multi-center study on magnetic resonance images
Significant difficulties in medical image segmentation include the high variability of images caused by their origin (multi-center), the acquisition protocols (multi-parametric), the variability of human anatomy, illness severity, the effect of age and gender, and notable other factors. This work ad...
Autores principales: | Sáenz-Gamboa, Jhon Jairo, Domenech, Julio, Alonso-Manjarrés, Antonio, Gómez, Jon A., de la Iglesia-Vayá, Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10242366/ https://www.ncbi.nlm.nih.gov/pubmed/37210154 http://dx.doi.org/10.1016/j.artmed.2023.102559 |
Ejemplares similares
-
Deep Learning for Multi-Tissue Segmentation and Fully Automatic Personalized Biomechanical Models from BACPAC Clinical Lumbar Spine MRI
por: Hess, Madeline, et al.
Publicado: (2022) -
Automatic lumbar spinal MRI image segmentation with a multi-scale attention network
por: Li, Haixing, et al.
Publicado: (2021) -
Automatic outer and inner breast tissue segmentation using multi-parametric MRI images of breast tumor patients
por: Thakran, Snekha, et al.
Publicado: (2018) -
Semi-Automatic Segmentation of Vertebral Bodies in MR Images of Human Lumbar Spines
por: Kim, Sewon, et al.
Publicado: (2018) -
AUCseg: An Automatically Unsupervised Clustering Toolbox for 3D-Segmentation of High-Grade Gliomas in Multi-Parametric MR Images
por: Zhao, Botao, et al.
Publicado: (2021)