Cargando…
Prediction of ICU Patients’ Deterioration Using Machine Learning Techniques
Introduction: Assessing vital sign measurements within hospital settings presents a valuable opportunity for data analysis and knowledge extraction. By generating adaptable, personalized prediction models of patient vital signs, these models can yield clinically relevant insights not achievable thro...
Autores principales: | Aldhoayan, Mohammed D, Aljubran, Yosra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10242424/ https://www.ncbi.nlm.nih.gov/pubmed/37288226 http://dx.doi.org/10.7759/cureus.38659 |
Ejemplares similares
-
Assessing the Satisfaction and Usability of Patient Families in the ICU With the Use of the Telehealth Communication Application myVisit
por: Aledreesi, Thamer M, et al.
Publicado: (2023) -
Logistic Regression and Machine Learning Models for Predicting Whether Intensive Care Patients Who Are Alert and Without Delirium Remain As Such for at Least Two More Days
por: Hadler, Rachel A, et al.
Publicado: (2023) -
Resident-led Implementation of a Standardized Handoff System to Facilitate Transfer of Postoperative Neurosurgical Patients to the ICU
por: Birk, Harjus S, et al.
Publicado: (2016) -
Machine Learning for Early Prediction of Sepsis in Intensive Care Unit (ICU) Patients
por: Alanazi, Abdullah, et al.
Publicado: (2023) -
Recognition of the deteriorating patient
por: Spiers, Laura, et al.
Publicado: (2015)