Cargando…

Controllable Doping of Mn into Ni(0.075‐x)Mn(x)Al(0.025)(OH)(2)(CO(3))(0.0125)·yH(2)O for Efficient Adsorption of Fluoride Ions

Here, the structural, optical, and adsorptive behaviors of Ni(0.075‐x)Mn(x)Al(0.025)(OH)(2)(CO(3))(0.0125)·yH(2)O (Ni‐Mn/Al) layered double hydroxides (LDHs) are investigated to capture fluoride from aqueous media. The 2D mesoporous plate‐like Ni‐Mn/Al LDHs are successfully prepared via a co‐precipi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wagassa, Ararso N., Tufa, Lemma T., Lee, Jaebeom, Zereffa, Enyew A., Shifa, Tofik A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10242529/
https://www.ncbi.nlm.nih.gov/pubmed/37287593
http://dx.doi.org/10.1002/gch2.202300018
_version_ 1785054233734676480
author Wagassa, Ararso N.
Tufa, Lemma T.
Lee, Jaebeom
Zereffa, Enyew A.
Shifa, Tofik A.
author_facet Wagassa, Ararso N.
Tufa, Lemma T.
Lee, Jaebeom
Zereffa, Enyew A.
Shifa, Tofik A.
author_sort Wagassa, Ararso N.
collection PubMed
description Here, the structural, optical, and adsorptive behaviors of Ni(0.075‐x)Mn(x)Al(0.025)(OH)(2)(CO(3))(0.0125)·yH(2)O (Ni‐Mn/Al) layered double hydroxides (LDHs) are investigated to capture fluoride from aqueous media. The 2D mesoporous plate‐like Ni‐Mn/Al LDHs are successfully prepared via a co‐precipitation method. The molar ratio of divalent to trivalent cations is maintained at 3:1 and the pH at 10. The X‐ray diffraction (XRD) results confirm that the samples consist of pure LDH phases with a basal spacing of 7.66 to 7.72 Å, corresponding to the (003) planes at 2θ of 11.47(o) and the average crystallite sizes of 4.13 to 8.67 nm. The plate‐like Mn‐doped Ni‐Al LDH consists of many superimposed nanosheets with a size of 9.99 nm. Energy‐dispersive X‐ray and X‐ray photoelectron spectroscopies confirm the incorporation of Mn(2+) into the Ni‐Al LDH. UV–vis diffuse reflectance spectroscopy results indicate that incorporating Mn(2+) into LDH enhances its interaction with light. The experimental data from the batch fluoride adsorption studies are subjected to kinetic models such as pseudo‐first order and pseudo‐second order. The kinetics of fluoride retention on Ni‐Mn/Al LDH obey the pseudo‐second‐order model. The Temkin equation well describes the equilibrium adsorption of fluoride. The results from the thermodynamic studies also indicate that fluoride adsorption is exothermic and spontaneous.
format Online
Article
Text
id pubmed-10242529
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-102425292023-06-07 Controllable Doping of Mn into Ni(0.075‐x)Mn(x)Al(0.025)(OH)(2)(CO(3))(0.0125)·yH(2)O for Efficient Adsorption of Fluoride Ions Wagassa, Ararso N. Tufa, Lemma T. Lee, Jaebeom Zereffa, Enyew A. Shifa, Tofik A. Glob Chall Research Articles Here, the structural, optical, and adsorptive behaviors of Ni(0.075‐x)Mn(x)Al(0.025)(OH)(2)(CO(3))(0.0125)·yH(2)O (Ni‐Mn/Al) layered double hydroxides (LDHs) are investigated to capture fluoride from aqueous media. The 2D mesoporous plate‐like Ni‐Mn/Al LDHs are successfully prepared via a co‐precipitation method. The molar ratio of divalent to trivalent cations is maintained at 3:1 and the pH at 10. The X‐ray diffraction (XRD) results confirm that the samples consist of pure LDH phases with a basal spacing of 7.66 to 7.72 Å, corresponding to the (003) planes at 2θ of 11.47(o) and the average crystallite sizes of 4.13 to 8.67 nm. The plate‐like Mn‐doped Ni‐Al LDH consists of many superimposed nanosheets with a size of 9.99 nm. Energy‐dispersive X‐ray and X‐ray photoelectron spectroscopies confirm the incorporation of Mn(2+) into the Ni‐Al LDH. UV–vis diffuse reflectance spectroscopy results indicate that incorporating Mn(2+) into LDH enhances its interaction with light. The experimental data from the batch fluoride adsorption studies are subjected to kinetic models such as pseudo‐first order and pseudo‐second order. The kinetics of fluoride retention on Ni‐Mn/Al LDH obey the pseudo‐second‐order model. The Temkin equation well describes the equilibrium adsorption of fluoride. The results from the thermodynamic studies also indicate that fluoride adsorption is exothermic and spontaneous. John Wiley and Sons Inc. 2023-04-06 /pmc/articles/PMC10242529/ /pubmed/37287593 http://dx.doi.org/10.1002/gch2.202300018 Text en © 2023 The Authors. Global Challenges published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Wagassa, Ararso N.
Tufa, Lemma T.
Lee, Jaebeom
Zereffa, Enyew A.
Shifa, Tofik A.
Controllable Doping of Mn into Ni(0.075‐x)Mn(x)Al(0.025)(OH)(2)(CO(3))(0.0125)·yH(2)O for Efficient Adsorption of Fluoride Ions
title Controllable Doping of Mn into Ni(0.075‐x)Mn(x)Al(0.025)(OH)(2)(CO(3))(0.0125)·yH(2)O for Efficient Adsorption of Fluoride Ions
title_full Controllable Doping of Mn into Ni(0.075‐x)Mn(x)Al(0.025)(OH)(2)(CO(3))(0.0125)·yH(2)O for Efficient Adsorption of Fluoride Ions
title_fullStr Controllable Doping of Mn into Ni(0.075‐x)Mn(x)Al(0.025)(OH)(2)(CO(3))(0.0125)·yH(2)O for Efficient Adsorption of Fluoride Ions
title_full_unstemmed Controllable Doping of Mn into Ni(0.075‐x)Mn(x)Al(0.025)(OH)(2)(CO(3))(0.0125)·yH(2)O for Efficient Adsorption of Fluoride Ions
title_short Controllable Doping of Mn into Ni(0.075‐x)Mn(x)Al(0.025)(OH)(2)(CO(3))(0.0125)·yH(2)O for Efficient Adsorption of Fluoride Ions
title_sort controllable doping of mn into ni(0.075‐x)mn(x)al(0.025)(oh)(2)(co(3))(0.0125)·yh(2)o for efficient adsorption of fluoride ions
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10242529/
https://www.ncbi.nlm.nih.gov/pubmed/37287593
http://dx.doi.org/10.1002/gch2.202300018
work_keys_str_mv AT wagassaararson controllabledopingofmnintoni0075xmnxal0025oh2co300125yh2oforefficientadsorptionoffluorideions
AT tufalemmat controllabledopingofmnintoni0075xmnxal0025oh2co300125yh2oforefficientadsorptionoffluorideions
AT leejaebeom controllabledopingofmnintoni0075xmnxal0025oh2co300125yh2oforefficientadsorptionoffluorideions
AT zereffaenyewa controllabledopingofmnintoni0075xmnxal0025oh2co300125yh2oforefficientadsorptionoffluorideions
AT shifatofika controllabledopingofmnintoni0075xmnxal0025oh2co300125yh2oforefficientadsorptionoffluorideions