Cargando…
Epiphany: predicting Hi-C contact maps from 1D epigenomic signals
Recent deep learning models that predict the Hi-C contact map from DNA sequence achieve promising accuracy but cannot generalize to new cell types and or even capture differences among training cell types. We propose Epiphany, a neural network to predict cell-type-specific Hi-C contact maps from wid...
Autores principales: | Yang, Rui, Das, Arnav, Gao, Vianne R., Karbalayghareh, Alireza, Noble, William S., Bilmes, Jeffery A., Leslie, Christina S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10242996/ https://www.ncbi.nlm.nih.gov/pubmed/37280678 http://dx.doi.org/10.1186/s13059-023-02934-9 |
Ejemplares similares
-
Avocado: a multi-scale deep tensor factorization method learns a latent representation of the human epigenome
por: Schreiber, Jacob, et al.
Publicado: (2020) -
Chromatin interaction–aware gene regulatory modeling with graph attention networks
por: Karbalayghareh, Alireza, et al.
Publicado: (2022) -
ChromaFold predicts the 3D contact map from single-cell chromatin accessibility
por: Gao, Vianne R., et al.
Publicado: (2023) -
Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts
por: Ay, Ferhat, et al.
Publicado: (2014) -
HiCBin: binning metagenomic contigs and recovering metagenome-assembled genomes using Hi-C contact maps
por: Du, Yuxuan, et al.
Publicado: (2022)