Cargando…
dsSurvival 2.0: privacy enhancing survival curves for survival models in the federated DataSHIELD analysis system
OBJECTIVE: Survival models are used extensively in biomedical sciences, where they allow the investigation of the effect of exposures on health outcomes. It is desirable to use diverse data sets in survival analyses, because this offers increased statistical power and generalisability of results. Ho...
Autores principales: | Banerjee, Soumya, Bishop, Tom R. P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243006/ https://www.ncbi.nlm.nih.gov/pubmed/37280717 http://dx.doi.org/10.1186/s13104-023-06372-5 |
Ejemplares similares
-
dsSurvival: Privacy preserving survival models for federated individual patient meta-analysis in DataSHIELD
por: Banerjee, Soumya, et al.
Publicado: (2022) -
dsSynthetic: synthetic data generation for the DataSHIELD federated analysis system
por: Banerjee, Soumya, et al.
Publicado: (2022) -
Privacy protected text analysis in DataSHIELD
por: Wilson, Rebecca, et al.
Publicado: (2017) -
Privacy protected graphical functionality in DataSHIELD
por: Avraam, Demetris, et al.
Publicado: (2017) -
Orchestrating privacy-protected big data analyses of data from different resources with R and DataSHIELD
por: Marcon, Yannick, et al.
Publicado: (2021)