Cargando…
HyperSpec: Ultrafast Mass Spectra Clustering in Hyperdimensional Space
[Image: see text] As current shotgun proteomics experiments can produce gigabytes of mass spectrometry data per hour, processing these massive data volumes has become progressively more challenging. Spectral clustering is an effective approach to speed up downstream data processing by merging highly...
Autores principales: | Xu, Weihong, Kang, Jaeyoung, Bittremieux, Wout, Moshiri, Niema, Rosing, Tajana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243109/ https://www.ncbi.nlm.nih.gov/pubmed/37166120 http://dx.doi.org/10.1021/acs.jproteome.2c00612 |
Ejemplares similares
-
Accelerating open modification spectral library searching on tensor core in high-dimensional space
por: Kang, Jaeyoung, et al.
Publicado: (2023) -
A learned embedding for efficient joint analysis of millions of mass spectra
por: Bittremieux, Wout, et al.
Publicado: (2022) -
High-throughput hyperdimensional vertebrate phenotyping
por: Pardo-Martin, Carlos, et al.
Publicado: (2013) -
Symbolic Representation and Learning With Hyperdimensional Computing
por: Mitrokhin, Anton, et al.
Publicado: (2020) -
Extremely fast and accurate open modification spectral library
searching of high-resolution mass spectra using feature hashing and graphics
processing units
por: Bittremieux, Wout, et al.
Publicado: (2019)