Cargando…
Predicting band gaps of MOFs on small data by deep transfer learning with data augmentation strategies
Porphyrin-based MOFs combine the unique photophysical and electrochemical properties of metalloporphyrins with the catalytic efficiency of MOF materials, making them an important candidate for light energy harvesting and conversion. However, accurate prediction of the band gap of porphyrin-based MOF...
Autores principales: | Zhang, Zhihui, Zhang, Chengwei, Zhang, Yutao, Deng, Shengwei, Yang, Yun-Fang, Su, An, She, Yuan-Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243186/ https://www.ncbi.nlm.nih.gov/pubmed/37288371 http://dx.doi.org/10.1039/d3ra02142d |
Ejemplares similares
-
A Perlin Noise-Based Augmentation Strategy for Deep Learning with Small Data Samples of HRCT Images
por: Bae, Hyun-Jin, et al.
Publicado: (2018) -
Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients
por: Deng, Yixiang, et al.
Publicado: (2021) -
A novel data augmentation approach for mask detection using deep transfer learning
por: Prusty, Manas Ranjan, et al.
Publicado: (2021) -
Text Data Augmentation for Deep Learning
por: Shorten, Connor, et al.
Publicado: (2021) -
Augmented Reality
for Enhanced Visualization of MOF
Adsorbents
por: Glasby, Lawson T., et al.
Publicado: (2023)