Cargando…
Machine Learning Spectroscopy Using a 2-Stage, Generalized Constituent Contribution Protocol
A corrected group contribution (CGC)–molecule contribution (MC)–Bayesian neural network (BNN) protocol for accurate prediction of absorption spectra is presented. Upon combination of BNN with CGC methods, the full absorption spectra of various molecules are afforded accurately and efficiently—by usi...
Autores principales: | Fan, Jinming, Qian, Chao, Zhou, Shaodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243197/ https://www.ncbi.nlm.nih.gov/pubmed/37287889 http://dx.doi.org/10.34133/research.0115 |
Ejemplares similares
-
Fungi Classification in Various Growth Stages Using Shortwave Infrared (SWIR) Spectroscopy and Machine Learning
por: Liu, Zhuo, et al.
Publicado: (2022) -
Determination of Soil Constituents Using Shifted Excitation Raman
Difference Spectroscopy
por: Sowoidnich, Kay, et al.
Publicado: (2022) -
The Use of Constituent Spectra and Weighting in Extended Multiplicative Signal Correction in Infrared Spectroscopy
por: Solheim, Johanne Heitmann, et al.
Publicado: (2022) -
Prostate cancer identification via photoacoustic spectroscopy and machine learning
por: Chen, Yingna, et al.
Publicado: (2021) -
Identifying plastics with photoluminescence spectroscopy and machine learning
por: Lotter, Benjamin, et al.
Publicado: (2022)