Cargando…
Leveraging human expert image annotations to improve pneumonia differentiation through human knowledge distillation
In medical imaging, deep learning models can be a critical tool to shorten time-to-diagnosis and support specialized medical staff in clinical decision making. The successful training of deep learning models usually requires large amounts of quality data, which are often not available in many medica...
Autores principales: | Schaudt, Daniel, von Schwerin, Reinhold, Hafner, Alexander, Riedel, Pascal, Späte, Christian, Reichert, Manfred, Hinteregger, Andreas, Beer, Meinrad, Kloth, Christopher |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243236/ https://www.ncbi.nlm.nih.gov/pubmed/37280219 http://dx.doi.org/10.1038/s41598-023-36148-7 |
Ejemplares similares
-
Augmentation strategies for an imbalanced learning problem on a novel COVID-19 severity dataset
por: Schaudt, Daniel, et al.
Publicado: (2023) -
ResNetFed: Federated Deep Learning Architecture for Privacy-Preserving Pneumonia Detection from COVID-19 Chest Radiographs
por: Riedel, Pascal, et al.
Publicado: (2023) -
The many faces of cryptogenic organizing pneumonia (COP)
por: Kloth, Christopher, et al.
Publicado: (2022) -
Potential role of CT-textural features for differentiation between viral interstitial pneumonias, pneumocystis jirovecii pneumonia and diffuse alveolar hemorrhage in early stages of disease: a proof of principle
por: Kloth, Christopher, et al.
Publicado: (2019) -
Leveraging functional annotations in genetic risk prediction for human complex diseases
por: Hu, Yiming, et al.
Publicado: (2017)