Cargando…

Optimizing b‐values schemes for diffusion MRI of the brain with segmented Intravoxel Incoherent Motion (IVIM) model

PURPOSE: To define an optimal set of b‐values for accurate derivation of diffusion MRI parameters in the brain with segmented Intravoxel Incoherent Motion (IVIM) model. METHODS: Simulations of diffusion signals were performed to define an optimal set of b‐values targeting different perfusion regimes...

Descripción completa

Detalles Bibliográficos
Autores principales: Paganelli, Chiara, Zampini, Marco Andrea, Morelli, Letizia, Buizza, Giulia, Fontana, Giulia, Anemoni, Luca, Imparato, Sara, Riva, Giulia, Iannalfi, Alberto, Orlandi, Ester, Baroni, Guido
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243330/
https://www.ncbi.nlm.nih.gov/pubmed/37031365
http://dx.doi.org/10.1002/acm2.13986
_version_ 1785054404588601344
author Paganelli, Chiara
Zampini, Marco Andrea
Morelli, Letizia
Buizza, Giulia
Fontana, Giulia
Anemoni, Luca
Imparato, Sara
Riva, Giulia
Iannalfi, Alberto
Orlandi, Ester
Baroni, Guido
author_facet Paganelli, Chiara
Zampini, Marco Andrea
Morelli, Letizia
Buizza, Giulia
Fontana, Giulia
Anemoni, Luca
Imparato, Sara
Riva, Giulia
Iannalfi, Alberto
Orlandi, Ester
Baroni, Guido
author_sort Paganelli, Chiara
collection PubMed
description PURPOSE: To define an optimal set of b‐values for accurate derivation of diffusion MRI parameters in the brain with segmented Intravoxel Incoherent Motion (IVIM) model. METHODS: Simulations of diffusion signals were performed to define an optimal set of b‐values targeting different perfusion regimes, by relying on an optimization procedure which minimizes the total relative error on estimated IVIM parameters computed with a segmented fitting procedure. Then, the optimal b‐values set was acquired in vivo on healthy subjects and skull base chordoma patients to compare the optimized protocol with a clinical one. RESULTS: The total relative error on simulations decreased of about 40% when adopting the optimal set of 13 b‐values (0 10 20 40 50 60 200 300 400 1200 1300 1400 1500 s/mm(2)), showing significant differences and increased precision on D and f estimates with respect to simulations with a non‐optimized b‐values set. Similarly, in vivo acquisitions demonstrated a dependency of IVIM parameters on the b‐values array, with differences between the optimal set of b‐values and a clinical non‐optimized acquisition. IVIM parameters were compatible to literature values, with D (0.679/0.701 [0.022/0.008] ·10(−3)mm(2) /s), f (5.49/5.80 [0.70/1.14] %), and D* (8.25/7.67 [0.92/0.83] ·10(−3)mm(2) /s) median [interquartile range] estimates for white matter/gray matter in volunteers and D (0.709/0.715/1.06 [0.035/0.023/0.271] ·10(−3)mm(2) /s), f (7.08/7.84/21.54 [1.20/1.06/6.05] %), and D* (10.85/11.84/2.32 [1.38/2.32/4.94] ·10(−3)mm(2) /s) for white matter/gray matter/Gross Tumor Volume in patients with skull‐base chordoma tumor. CONCLUSIONS: The definition of an optimal b‐values set can improve the estimation of quantitative IVIM parameters. This allows setting up an optimized approach that can be adopted for IVIM studies in the brain.
format Online
Article
Text
id pubmed-10243330
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-102433302023-06-07 Optimizing b‐values schemes for diffusion MRI of the brain with segmented Intravoxel Incoherent Motion (IVIM) model Paganelli, Chiara Zampini, Marco Andrea Morelli, Letizia Buizza, Giulia Fontana, Giulia Anemoni, Luca Imparato, Sara Riva, Giulia Iannalfi, Alberto Orlandi, Ester Baroni, Guido J Appl Clin Med Phys Medical Imaging PURPOSE: To define an optimal set of b‐values for accurate derivation of diffusion MRI parameters in the brain with segmented Intravoxel Incoherent Motion (IVIM) model. METHODS: Simulations of diffusion signals were performed to define an optimal set of b‐values targeting different perfusion regimes, by relying on an optimization procedure which minimizes the total relative error on estimated IVIM parameters computed with a segmented fitting procedure. Then, the optimal b‐values set was acquired in vivo on healthy subjects and skull base chordoma patients to compare the optimized protocol with a clinical one. RESULTS: The total relative error on simulations decreased of about 40% when adopting the optimal set of 13 b‐values (0 10 20 40 50 60 200 300 400 1200 1300 1400 1500 s/mm(2)), showing significant differences and increased precision on D and f estimates with respect to simulations with a non‐optimized b‐values set. Similarly, in vivo acquisitions demonstrated a dependency of IVIM parameters on the b‐values array, with differences between the optimal set of b‐values and a clinical non‐optimized acquisition. IVIM parameters were compatible to literature values, with D (0.679/0.701 [0.022/0.008] ·10(−3)mm(2) /s), f (5.49/5.80 [0.70/1.14] %), and D* (8.25/7.67 [0.92/0.83] ·10(−3)mm(2) /s) median [interquartile range] estimates for white matter/gray matter in volunteers and D (0.709/0.715/1.06 [0.035/0.023/0.271] ·10(−3)mm(2) /s), f (7.08/7.84/21.54 [1.20/1.06/6.05] %), and D* (10.85/11.84/2.32 [1.38/2.32/4.94] ·10(−3)mm(2) /s) for white matter/gray matter/Gross Tumor Volume in patients with skull‐base chordoma tumor. CONCLUSIONS: The definition of an optimal b‐values set can improve the estimation of quantitative IVIM parameters. This allows setting up an optimized approach that can be adopted for IVIM studies in the brain. John Wiley and Sons Inc. 2023-04-09 /pmc/articles/PMC10243330/ /pubmed/37031365 http://dx.doi.org/10.1002/acm2.13986 Text en © 2023 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Medical Imaging
Paganelli, Chiara
Zampini, Marco Andrea
Morelli, Letizia
Buizza, Giulia
Fontana, Giulia
Anemoni, Luca
Imparato, Sara
Riva, Giulia
Iannalfi, Alberto
Orlandi, Ester
Baroni, Guido
Optimizing b‐values schemes for diffusion MRI of the brain with segmented Intravoxel Incoherent Motion (IVIM) model
title Optimizing b‐values schemes for diffusion MRI of the brain with segmented Intravoxel Incoherent Motion (IVIM) model
title_full Optimizing b‐values schemes for diffusion MRI of the brain with segmented Intravoxel Incoherent Motion (IVIM) model
title_fullStr Optimizing b‐values schemes for diffusion MRI of the brain with segmented Intravoxel Incoherent Motion (IVIM) model
title_full_unstemmed Optimizing b‐values schemes for diffusion MRI of the brain with segmented Intravoxel Incoherent Motion (IVIM) model
title_short Optimizing b‐values schemes for diffusion MRI of the brain with segmented Intravoxel Incoherent Motion (IVIM) model
title_sort optimizing b‐values schemes for diffusion mri of the brain with segmented intravoxel incoherent motion (ivim) model
topic Medical Imaging
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243330/
https://www.ncbi.nlm.nih.gov/pubmed/37031365
http://dx.doi.org/10.1002/acm2.13986
work_keys_str_mv AT paganellichiara optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel
AT zampinimarcoandrea optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel
AT morelliletizia optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel
AT buizzagiulia optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel
AT fontanagiulia optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel
AT anemoniluca optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel
AT imparatosara optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel
AT rivagiulia optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel
AT iannalfialberto optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel
AT orlandiester optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel
AT baroniguido optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel