Cargando…
Optimizing b‐values schemes for diffusion MRI of the brain with segmented Intravoxel Incoherent Motion (IVIM) model
PURPOSE: To define an optimal set of b‐values for accurate derivation of diffusion MRI parameters in the brain with segmented Intravoxel Incoherent Motion (IVIM) model. METHODS: Simulations of diffusion signals were performed to define an optimal set of b‐values targeting different perfusion regimes...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243330/ https://www.ncbi.nlm.nih.gov/pubmed/37031365 http://dx.doi.org/10.1002/acm2.13986 |
_version_ | 1785054404588601344 |
---|---|
author | Paganelli, Chiara Zampini, Marco Andrea Morelli, Letizia Buizza, Giulia Fontana, Giulia Anemoni, Luca Imparato, Sara Riva, Giulia Iannalfi, Alberto Orlandi, Ester Baroni, Guido |
author_facet | Paganelli, Chiara Zampini, Marco Andrea Morelli, Letizia Buizza, Giulia Fontana, Giulia Anemoni, Luca Imparato, Sara Riva, Giulia Iannalfi, Alberto Orlandi, Ester Baroni, Guido |
author_sort | Paganelli, Chiara |
collection | PubMed |
description | PURPOSE: To define an optimal set of b‐values for accurate derivation of diffusion MRI parameters in the brain with segmented Intravoxel Incoherent Motion (IVIM) model. METHODS: Simulations of diffusion signals were performed to define an optimal set of b‐values targeting different perfusion regimes, by relying on an optimization procedure which minimizes the total relative error on estimated IVIM parameters computed with a segmented fitting procedure. Then, the optimal b‐values set was acquired in vivo on healthy subjects and skull base chordoma patients to compare the optimized protocol with a clinical one. RESULTS: The total relative error on simulations decreased of about 40% when adopting the optimal set of 13 b‐values (0 10 20 40 50 60 200 300 400 1200 1300 1400 1500 s/mm(2)), showing significant differences and increased precision on D and f estimates with respect to simulations with a non‐optimized b‐values set. Similarly, in vivo acquisitions demonstrated a dependency of IVIM parameters on the b‐values array, with differences between the optimal set of b‐values and a clinical non‐optimized acquisition. IVIM parameters were compatible to literature values, with D (0.679/0.701 [0.022/0.008] ·10(−3)mm(2) /s), f (5.49/5.80 [0.70/1.14] %), and D* (8.25/7.67 [0.92/0.83] ·10(−3)mm(2) /s) median [interquartile range] estimates for white matter/gray matter in volunteers and D (0.709/0.715/1.06 [0.035/0.023/0.271] ·10(−3)mm(2) /s), f (7.08/7.84/21.54 [1.20/1.06/6.05] %), and D* (10.85/11.84/2.32 [1.38/2.32/4.94] ·10(−3)mm(2) /s) for white matter/gray matter/Gross Tumor Volume in patients with skull‐base chordoma tumor. CONCLUSIONS: The definition of an optimal b‐values set can improve the estimation of quantitative IVIM parameters. This allows setting up an optimized approach that can be adopted for IVIM studies in the brain. |
format | Online Article Text |
id | pubmed-10243330 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102433302023-06-07 Optimizing b‐values schemes for diffusion MRI of the brain with segmented Intravoxel Incoherent Motion (IVIM) model Paganelli, Chiara Zampini, Marco Andrea Morelli, Letizia Buizza, Giulia Fontana, Giulia Anemoni, Luca Imparato, Sara Riva, Giulia Iannalfi, Alberto Orlandi, Ester Baroni, Guido J Appl Clin Med Phys Medical Imaging PURPOSE: To define an optimal set of b‐values for accurate derivation of diffusion MRI parameters in the brain with segmented Intravoxel Incoherent Motion (IVIM) model. METHODS: Simulations of diffusion signals were performed to define an optimal set of b‐values targeting different perfusion regimes, by relying on an optimization procedure which minimizes the total relative error on estimated IVIM parameters computed with a segmented fitting procedure. Then, the optimal b‐values set was acquired in vivo on healthy subjects and skull base chordoma patients to compare the optimized protocol with a clinical one. RESULTS: The total relative error on simulations decreased of about 40% when adopting the optimal set of 13 b‐values (0 10 20 40 50 60 200 300 400 1200 1300 1400 1500 s/mm(2)), showing significant differences and increased precision on D and f estimates with respect to simulations with a non‐optimized b‐values set. Similarly, in vivo acquisitions demonstrated a dependency of IVIM parameters on the b‐values array, with differences between the optimal set of b‐values and a clinical non‐optimized acquisition. IVIM parameters were compatible to literature values, with D (0.679/0.701 [0.022/0.008] ·10(−3)mm(2) /s), f (5.49/5.80 [0.70/1.14] %), and D* (8.25/7.67 [0.92/0.83] ·10(−3)mm(2) /s) median [interquartile range] estimates for white matter/gray matter in volunteers and D (0.709/0.715/1.06 [0.035/0.023/0.271] ·10(−3)mm(2) /s), f (7.08/7.84/21.54 [1.20/1.06/6.05] %), and D* (10.85/11.84/2.32 [1.38/2.32/4.94] ·10(−3)mm(2) /s) for white matter/gray matter/Gross Tumor Volume in patients with skull‐base chordoma tumor. CONCLUSIONS: The definition of an optimal b‐values set can improve the estimation of quantitative IVIM parameters. This allows setting up an optimized approach that can be adopted for IVIM studies in the brain. John Wiley and Sons Inc. 2023-04-09 /pmc/articles/PMC10243330/ /pubmed/37031365 http://dx.doi.org/10.1002/acm2.13986 Text en © 2023 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Medical Imaging Paganelli, Chiara Zampini, Marco Andrea Morelli, Letizia Buizza, Giulia Fontana, Giulia Anemoni, Luca Imparato, Sara Riva, Giulia Iannalfi, Alberto Orlandi, Ester Baroni, Guido Optimizing b‐values schemes for diffusion MRI of the brain with segmented Intravoxel Incoherent Motion (IVIM) model |
title | Optimizing b‐values schemes for diffusion MRI of the brain with segmented Intravoxel Incoherent Motion (IVIM) model |
title_full | Optimizing b‐values schemes for diffusion MRI of the brain with segmented Intravoxel Incoherent Motion (IVIM) model |
title_fullStr | Optimizing b‐values schemes for diffusion MRI of the brain with segmented Intravoxel Incoherent Motion (IVIM) model |
title_full_unstemmed | Optimizing b‐values schemes for diffusion MRI of the brain with segmented Intravoxel Incoherent Motion (IVIM) model |
title_short | Optimizing b‐values schemes for diffusion MRI of the brain with segmented Intravoxel Incoherent Motion (IVIM) model |
title_sort | optimizing b‐values schemes for diffusion mri of the brain with segmented intravoxel incoherent motion (ivim) model |
topic | Medical Imaging |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243330/ https://www.ncbi.nlm.nih.gov/pubmed/37031365 http://dx.doi.org/10.1002/acm2.13986 |
work_keys_str_mv | AT paganellichiara optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel AT zampinimarcoandrea optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel AT morelliletizia optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel AT buizzagiulia optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel AT fontanagiulia optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel AT anemoniluca optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel AT imparatosara optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel AT rivagiulia optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel AT iannalfialberto optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel AT orlandiester optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel AT baroniguido optimizingbvaluesschemesfordiffusionmriofthebrainwithsegmentedintravoxelincoherentmotionivimmodel |