Cargando…
DARU‐Net: A dual attention residual U‐Net for uterine fibroids segmentation on MRI
PURPOSE: Uterine fibroid is the most common benign tumor in female reproductive organs. In order to guide the treatment, it is crucial to detect the location, shape, and size of the tumor. This study proposed a deep learning approach based on attention mechanisms to segment uterine fibroids automati...
Autores principales: | Zhang, Jian, Liu, Yang, Chen, Liping, Ma, Si, Zhong, Yuqing, He, Zhimin, Li, Chengwei, Xiao, Zhibo, Zheng, Yineng, Lv, Fajin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243339/ https://www.ncbi.nlm.nih.gov/pubmed/36992637 http://dx.doi.org/10.1002/acm2.13937 |
Ejemplares similares
-
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
Multi-U-Net: Residual Module under Multisensory Field and Attention Mechanism Based Optimized U-Net for VHR Image Semantic Segmentation
por: Ran, Si, et al.
Publicado: (2021) -
An interpretable MRI-based radiomics model predicting the prognosis of high-intensity focused ultrasound ablation of uterine fibroids
por: Li, Chengwei, et al.
Publicado: (2023) -
SCAU-Net: Spatial-Channel Attention U-Net for Gland Segmentation
por: Zhao, Peng, et al.
Publicado: (2020) -
APU-Net: An Attention Mechanism Parallel U-Net for Lung Tumor Segmentation
por: Zhou, Tao, et al.
Publicado: (2022)