Cargando…
Targeting CDK9 with selective inhibitors or degraders in tumor therapy: an overview of recent developments
As a catalytic subunit of the positive transcription elongation factor b (P-TEFb), cyclin-dependent kinase 9 (CDK9) has been demonstrated to contribute to carcinogenesis. This review focuses on the development of selective CDK9 inhibitors and proteolysis-targeting chimera (PROTAC) degraders. Twenty...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243401/ https://www.ncbi.nlm.nih.gov/pubmed/37272701 http://dx.doi.org/10.1080/15384047.2023.2219470 |
Sumario: | As a catalytic subunit of the positive transcription elongation factor b (P-TEFb), cyclin-dependent kinase 9 (CDK9) has been demonstrated to contribute to carcinogenesis. This review focuses on the development of selective CDK9 inhibitors and proteolysis-targeting chimera (PROTAC) degraders. Twenty selective CDK9 inhibitors and degraders are introduced along with their structures, IC50 values, in vitro and in vivo experiments, mechanisms underlying their inhibitory effects, and combination regimens. NVP-2, MC180295, fadraciclib, KB-0742, LZT-106, and 21e have been developed mainly for treating solid tumors, and most of them work only on certain genotypes of solid tumors. Only VIP152 has been proven to benefit the patients with advanced high-grade lymphoma (HGL) and solid tumors in clinical trials. Continued efforts to explore the molecular mechanisms underlying the inhibitory effects, and to identify suitable tumor genotypes and combination treatment strategies, are crucial to demonstrate the efficacy of selective CDK9 inhibitors and degraders in tumor therapy. |
---|