Cargando…
GraphscoreDTA: optimized graph neural network for protein–ligand binding affinity prediction
MOTIVATION: Computational approaches for identifying the protein–ligand binding affinity can greatly facilitate drug discovery and development. At present, many deep learning-based models are proposed to predict the protein–ligand binding affinity and achieve significant performance improvement. How...
Autores principales: | Wang, Kaili, Zhou, Renyi, Tang, Jing, Li, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243863/ https://www.ncbi.nlm.nih.gov/pubmed/37225408 http://dx.doi.org/10.1093/bioinformatics/btad340 |
Ejemplares similares
-
MGraphDTA: deep multiscale graph neural network for explainable drug–target binding affinity prediction
por: Yang, Ziduo, et al.
Publicado: (2022) -
NHGNN-DTA: a node-adaptive hybrid graph neural network for interpretable drug–target binding affinity prediction
por: He, Haohuai, et al.
Publicado: (2023) -
iEdgeDTA: integrated edge information and 1D graph convolutional neural networks for binding affinity prediction
por: Suviriyapaisal, Natchanon, et al.
Publicado: (2023) -
MSGNN-DTA: Multi-Scale Topological Feature Fusion Based on Graph Neural Networks for Drug–Target Binding Affinity Prediction
por: Wang, Shudong, et al.
Publicado: (2023) -
SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network
por: Zhang, Shugang, et al.
Publicado: (2021)