Cargando…

HONMF: integration analysis of multi-omics microbiome data via matrix factorization and hypergraph

MOTIVATION: The accumulation of multi-omics microbiome data provides an unprecedented opportunity to understand the diversity of bacterial, fungal, and viral components from different conditions. The changes in the composition of viruses, bacteria, and fungi communities have been associated with env...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Yuanyuan, Liu, Lifang, Ma, Yingjun, Zhang, Song
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243929/
https://www.ncbi.nlm.nih.gov/pubmed/37216923
http://dx.doi.org/10.1093/bioinformatics/btad335
_version_ 1785054532883972096
author Ma, Yuanyuan
Liu, Lifang
Ma, Yingjun
Zhang, Song
author_facet Ma, Yuanyuan
Liu, Lifang
Ma, Yingjun
Zhang, Song
author_sort Ma, Yuanyuan
collection PubMed
description MOTIVATION: The accumulation of multi-omics microbiome data provides an unprecedented opportunity to understand the diversity of bacterial, fungal, and viral components from different conditions. The changes in the composition of viruses, bacteria, and fungi communities have been associated with environments and critical illness. However, identifying and dissecting the heterogeneity of microbial samples and cross-kingdom interactions remains challenging. RESULTS: We propose HONMF for the integrative analysis of multi-modal microbiome data, including bacterial, fungal, and viral composition profiles. HONMF enables identification of microbial samples and data visualization, and also facilitates downstream analysis, including feature selection and cross-kingdom association analysis between species. HONMF is an unsupervised method based on hypergraph induced orthogonal non-negative matrix factorization, where it assumes that latent variables are specific for each composition profile and integrates the distinct sets of latent variables through graph fusion strategy, which better tackles the distinct characteristics in bacterial, fungal, and viral microbiome. We implemented HONMF on several multi-omics microbiome datasets from different environments and tissues. The experimental results demonstrate the superior performance of HONMF in data visualization and clustering. HONMF also provides rich biological insights by implementing discriminative microbial feature selection and bacterium–fungus–virus association analysis, which improves our understanding of ecological interactions and microbial pathogenesis. AVAILABILITY AND IMPLEMENTATION: The software and datasets are available at https://github.com/chonghua-1983/HONMF.
format Online
Article
Text
id pubmed-10243929
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-102439292023-06-07 HONMF: integration analysis of multi-omics microbiome data via matrix factorization and hypergraph Ma, Yuanyuan Liu, Lifang Ma, Yingjun Zhang, Song Bioinformatics Original Paper MOTIVATION: The accumulation of multi-omics microbiome data provides an unprecedented opportunity to understand the diversity of bacterial, fungal, and viral components from different conditions. The changes in the composition of viruses, bacteria, and fungi communities have been associated with environments and critical illness. However, identifying and dissecting the heterogeneity of microbial samples and cross-kingdom interactions remains challenging. RESULTS: We propose HONMF for the integrative analysis of multi-modal microbiome data, including bacterial, fungal, and viral composition profiles. HONMF enables identification of microbial samples and data visualization, and also facilitates downstream analysis, including feature selection and cross-kingdom association analysis between species. HONMF is an unsupervised method based on hypergraph induced orthogonal non-negative matrix factorization, where it assumes that latent variables are specific for each composition profile and integrates the distinct sets of latent variables through graph fusion strategy, which better tackles the distinct characteristics in bacterial, fungal, and viral microbiome. We implemented HONMF on several multi-omics microbiome datasets from different environments and tissues. The experimental results demonstrate the superior performance of HONMF in data visualization and clustering. HONMF also provides rich biological insights by implementing discriminative microbial feature selection and bacterium–fungus–virus association analysis, which improves our understanding of ecological interactions and microbial pathogenesis. AVAILABILITY AND IMPLEMENTATION: The software and datasets are available at https://github.com/chonghua-1983/HONMF. Oxford University Press 2023-05-22 /pmc/articles/PMC10243929/ /pubmed/37216923 http://dx.doi.org/10.1093/bioinformatics/btad335 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Paper
Ma, Yuanyuan
Liu, Lifang
Ma, Yingjun
Zhang, Song
HONMF: integration analysis of multi-omics microbiome data via matrix factorization and hypergraph
title HONMF: integration analysis of multi-omics microbiome data via matrix factorization and hypergraph
title_full HONMF: integration analysis of multi-omics microbiome data via matrix factorization and hypergraph
title_fullStr HONMF: integration analysis of multi-omics microbiome data via matrix factorization and hypergraph
title_full_unstemmed HONMF: integration analysis of multi-omics microbiome data via matrix factorization and hypergraph
title_short HONMF: integration analysis of multi-omics microbiome data via matrix factorization and hypergraph
title_sort honmf: integration analysis of multi-omics microbiome data via matrix factorization and hypergraph
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243929/
https://www.ncbi.nlm.nih.gov/pubmed/37216923
http://dx.doi.org/10.1093/bioinformatics/btad335
work_keys_str_mv AT mayuanyuan honmfintegrationanalysisofmultiomicsmicrobiomedataviamatrixfactorizationandhypergraph
AT liulifang honmfintegrationanalysisofmultiomicsmicrobiomedataviamatrixfactorizationandhypergraph
AT mayingjun honmfintegrationanalysisofmultiomicsmicrobiomedataviamatrixfactorizationandhypergraph
AT zhangsong honmfintegrationanalysisofmultiomicsmicrobiomedataviamatrixfactorizationandhypergraph