Cargando…
Epicosm—a framework for linking online social media in epidemiological cohorts
MOTIVATION: Social media represent an unrivalled opportunity for epidemiological cohorts to collect large amounts of high-resolution time course data on mental health. Equally, the high-quality data held by epidemiological cohorts could greatly benefit social media research as a source of ground tru...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244036/ https://www.ncbi.nlm.nih.gov/pubmed/36847716 http://dx.doi.org/10.1093/ije/dyad020 |
Sumario: | MOTIVATION: Social media represent an unrivalled opportunity for epidemiological cohorts to collect large amounts of high-resolution time course data on mental health. Equally, the high-quality data held by epidemiological cohorts could greatly benefit social media research as a source of ground truth for validating digital phenotyping algorithms. However, there is currently a lack of software for doing this in a secure and acceptable manner. We worked with cohort leaders and participants to co-design an open-source, robust and expandable software framework for gathering social media data in epidemiological cohorts. IMPLEMENTATION: Epicosm is implemented as a Python framework that is straightforward to deploy and run inside a cohort’s data safe haven. GENERAL FEATURES: The software regularly gathers Tweets from a list of accounts and stores them in a database for linking to existing cohort data. AVAILABILITY: This open-source software is freely available at [https://dynamicgenetics.github.io/Epicosm/]. |
---|