Cargando…
Exploring the effects of pandemics on transportation through correlations and deep learning techniques
The COVID-19 pandemic has had a significant impact on human migration worldwide, affecting transportation patterns in cities. Many cities have issued "stay-at-home" orders during the outbreak, causing commuters to change their usual modes of transportation. For example, some transit/bus pa...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244085/ https://www.ncbi.nlm.nih.gov/pubmed/37362732 http://dx.doi.org/10.1007/s11042-023-15803-1 |
_version_ | 1785054565483151360 |
---|---|
author | Gamel, Samah A. Hassan, Esraa El-Rashidy, Nora Talaat, Fatma M. |
author_facet | Gamel, Samah A. Hassan, Esraa El-Rashidy, Nora Talaat, Fatma M. |
author_sort | Gamel, Samah A. |
collection | PubMed |
description | The COVID-19 pandemic has had a significant impact on human migration worldwide, affecting transportation patterns in cities. Many cities have issued "stay-at-home" orders during the outbreak, causing commuters to change their usual modes of transportation. For example, some transit/bus passengers have switched to driving or car-sharing. As a result, urban traffic congestion patterns have changed dramatically, and understanding these changes is crucial for effective emergency traffic management and control efforts. While previous studies have focused on natural disasters or major accidents, only a few have examined pandemic-related traffic congestion patterns. This paper uses correlations and machine learning techniques to analyze the relationship between COVID-19 and transportation. The authors simulated traffic models for five different networks and proposed a Traffic Prediction Technique (TPT), which includes an Impact Calculation Methodology that uses Pearson's Correlation Coefficient and Linear Regression, as well as a Traffic Prediction Module (TPM). The paper's main contribution is the introduction of the TPM, which uses Convolutional Neural Network to predict the impact of COVID-19 on transportation. The results indicate a strong correlation between the spread of COVID-19 and transportation patterns, and the CNN has a high accuracy rate in predicting these impacts. |
format | Online Article Text |
id | pubmed-10244085 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-102440852023-06-08 Exploring the effects of pandemics on transportation through correlations and deep learning techniques Gamel, Samah A. Hassan, Esraa El-Rashidy, Nora Talaat, Fatma M. Multimed Tools Appl Article The COVID-19 pandemic has had a significant impact on human migration worldwide, affecting transportation patterns in cities. Many cities have issued "stay-at-home" orders during the outbreak, causing commuters to change their usual modes of transportation. For example, some transit/bus passengers have switched to driving or car-sharing. As a result, urban traffic congestion patterns have changed dramatically, and understanding these changes is crucial for effective emergency traffic management and control efforts. While previous studies have focused on natural disasters or major accidents, only a few have examined pandemic-related traffic congestion patterns. This paper uses correlations and machine learning techniques to analyze the relationship between COVID-19 and transportation. The authors simulated traffic models for five different networks and proposed a Traffic Prediction Technique (TPT), which includes an Impact Calculation Methodology that uses Pearson's Correlation Coefficient and Linear Regression, as well as a Traffic Prediction Module (TPM). The paper's main contribution is the introduction of the TPM, which uses Convolutional Neural Network to predict the impact of COVID-19 on transportation. The results indicate a strong correlation between the spread of COVID-19 and transportation patterns, and the CNN has a high accuracy rate in predicting these impacts. Springer US 2023-06-07 /pmc/articles/PMC10244085/ /pubmed/37362732 http://dx.doi.org/10.1007/s11042-023-15803-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Gamel, Samah A. Hassan, Esraa El-Rashidy, Nora Talaat, Fatma M. Exploring the effects of pandemics on transportation through correlations and deep learning techniques |
title | Exploring the effects of pandemics on transportation through correlations and deep learning techniques |
title_full | Exploring the effects of pandemics on transportation through correlations and deep learning techniques |
title_fullStr | Exploring the effects of pandemics on transportation through correlations and deep learning techniques |
title_full_unstemmed | Exploring the effects of pandemics on transportation through correlations and deep learning techniques |
title_short | Exploring the effects of pandemics on transportation through correlations and deep learning techniques |
title_sort | exploring the effects of pandemics on transportation through correlations and deep learning techniques |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244085/ https://www.ncbi.nlm.nih.gov/pubmed/37362732 http://dx.doi.org/10.1007/s11042-023-15803-1 |
work_keys_str_mv | AT gamelsamaha exploringtheeffectsofpandemicsontransportationthroughcorrelationsanddeeplearningtechniques AT hassanesraa exploringtheeffectsofpandemicsontransportationthroughcorrelationsanddeeplearningtechniques AT elrashidynora exploringtheeffectsofpandemicsontransportationthroughcorrelationsanddeeplearningtechniques AT talaatfatmam exploringtheeffectsofpandemicsontransportationthroughcorrelationsanddeeplearningtechniques |