Cargando…

Decoding the molecular landscape of keloids: new insights from single-cell transcriptomics

Keloids are a fibrotic disease caused by an excessive accumulation of extracellular matrix in the dermis; they have neoplasia-like properties of aggressive growth and high posttreatment recurrence rates. Therefore, it is imperative to gain additional insight into the pathobiology of keloid formation...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, Yijun, Wang, Youbin, Shan, Mengjie, Hao, Yan, Liang, Zhengyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244213/
https://www.ncbi.nlm.nih.gov/pubmed/37293384
http://dx.doi.org/10.1093/burnst/tkad017
Descripción
Sumario:Keloids are a fibrotic disease caused by an excessive accumulation of extracellular matrix in the dermis; they have neoplasia-like properties of aggressive growth and high posttreatment recurrence rates. Therefore, it is imperative to gain additional insight into the pathobiology of keloid formation. Single-cell RNA sequencing (scRNA-seq) technology has brought data-driven innovation to understanding the pathogenesis of keloids by breaking the limitations of traditional sequencing technologies to resolve cell composition and to distinguish functional cell subtypes at an unprecedented resolution. The present review aims to cover the application of scRNA-seq technology in keloids and its exploratory findings, including the depiction of the cellular landscape of keloids, fibroblast heterogeneity, the lineage development of Schwann cells and the mesenchymal-activation phenomenon of endothelial cells. Furthermore, scRNA-seq records the transcriptional profiles of fibroblasts and immune cells in a more refined manner, and this gene expression information provides excellent material for inferring intercellular communication networks and lays an important theoretical foundation for future studies.