Cargando…
Deep learning for predicting future lesion emergence in high-risk breast MRI screening: a feasibility study
BACKGROUND: International societies have issued guidelines for high-risk breast cancer (BC) screening, recommending contrast-enhanced magnetic resonance imaging (CE-MRI) of the breast as a supplemental diagnostic tool. In our study, we tested the applicability of deep learning-based anomaly detectio...
Autores principales: | Burger, Bianca, Bernathova, Maria, Seeböck, Philipp, Singer, Christian F., Helbich, Thomas H., Langs, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244308/ https://www.ncbi.nlm.nih.gov/pubmed/37280478 http://dx.doi.org/10.1186/s41747-023-00343-y |
Ejemplares similares
-
The Kaiser score reliably excludes malignancy in benign contrast-enhancing lesions classified as BI-RADS 4 on breast MRI high-risk screening exams
por: Milos, Ruxandra Iulia, et al.
Publicado: (2020) -
Low‐Dose, Contrast‐Enhanced Mammography Compared to Contrast‐Enhanced Breast MRI: A Feasibility Study
por: Clauser, Paola, et al.
Publicado: (2020) -
A simple classification system (the Tree flowchart) for breast MRI can reduce the number of unnecessary biopsies in MRI-only lesions
por: Woitek, Ramona, et al.
Publicado: (2017) -
MR-guided vacuum-assisted breast biopsy of MRI-only lesions: a single center experience
por: Spick, Claudio, et al.
Publicado: (2016) -
Automatic segmentation and classification of breast lesions through identification of informative multiparametric PET/MRI features
por: Vogl, Wolf-Dieter, et al.
Publicado: (2019)