Cargando…

The ufmylation modification of ribosomal protein L10 in the development of pancreatic adenocarcinoma

Pancreatic adenocarcinoma (PAAD) is the most malignant cancer with a high mortality rate. Despite the association of ribosomal protein L10 (RPL10) with PAAD and previous reports on RPL26 ufmylation, the relationship between RPL10 ufmylation and PAAD development remains unexplored. Here, we report th...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Kun, Chen, Siyu, Wu, Yue, Wang, Yang, Lu, Yousheng, Sun, Yanzi, Chen, Yijun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244432/
https://www.ncbi.nlm.nih.gov/pubmed/37280198
http://dx.doi.org/10.1038/s41419-023-05877-y
Descripción
Sumario:Pancreatic adenocarcinoma (PAAD) is the most malignant cancer with a high mortality rate. Despite the association of ribosomal protein L10 (RPL10) with PAAD and previous reports on RPL26 ufmylation, the relationship between RPL10 ufmylation and PAAD development remains unexplored. Here, we report the dissection of ufmylating process of RPL10 and potential roles of RPL10 ufmylation in PAAD development. The ufmylation of RPL10 was confirmed in both pancreatic patient tissues and cell lines, and specific modification sites were identified and verified. Phenotypically, RPL10 ufmylation significantly increased cell proliferation and stemness, which is principally resulted from higher expression of transcription factor KLF4. Moreover, the mutagenesis of ufmylation sites in RPL10 further demonstrated the connection of RPL10 ufmylation with cell proliferation and stemness. Collectively, this study reveals that PRL10 ufmylation plays an important role to enhance the stemness of pancreatic cancer cells for PAAD development.