Cargando…
A facial depression recognition method based on hybrid multi-head cross attention network
INTRODUCTION: Deep-learn methods based on convolutional neural networks (CNNs) have demonstrated impressive performance in depression analysis. Nevertheless, some critical challenges need to be resolved in these methods: (1) It is still difficult for CNNs to learn long-range inductive biases in the...
Autores principales: | Li, Yutong, Liu, Zhenyu, Zhou, Li, Yuan, Xiaoyan, Shangguan, Zixuan, Hu, Xiping, Hu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244529/ https://www.ncbi.nlm.nih.gov/pubmed/37292164 http://dx.doi.org/10.3389/fnins.2023.1188434 |
Ejemplares similares
-
Multi-scale fusion visual attention network for facial micro-expression recognition
por: Pan, Hang, et al.
Publicado: (2023) -
Distract Your Attention: Multi-Head Cross Attention Network for Facial Expression Recognition
por: Wen, Zhengyao, et al.
Publicado: (2023) -
Deep Neural Networks for Depression Recognition Based on 2D and 3D Facial Expressions Under Emotional Stimulus Tasks
por: Guo, Weitong, et al.
Publicado: (2021) -
Hybrid Attention Cascade Network for Facial Expression Recognition
por: Zhu, Xiaoliang, et al.
Publicado: (2021) -
Occlusion facial expression recognition based on feature fusion residual attention network
por: Chen, Yuekun, et al.
Publicado: (2023)