Cargando…
Identification of AKI signatures and classification patterns in ccRCC based on machine learning
BACKGROUND: Acute kidney injury can be mitigated if detected early. There are limited biomarkers for predicting acute kidney injury (AKI). In this study, we used public databases with machine learning algorithms to identify novel biomarkers to predict AKI. In addition, the interaction between AKI an...
Autores principales: | Wang, Li, Peng, Fei, Li, Zhen Hua, Deng, Yu Fei, Ruan, Meng Na, Mao, Zhi Guo, Li, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244623/ https://www.ncbi.nlm.nih.gov/pubmed/37293297 http://dx.doi.org/10.3389/fmed.2023.1195678 |
Ejemplares similares
-
Untangling ccRCC prognosis with SLINKY
por: Reinfeld, Bradley I., et al.
Publicado: (2017) -
A multiomics disease progression signature of low-risk ccRCC
por: Strauss, Philipp, et al.
Publicado: (2022) -
Functional and translational consequences of immunometabolic coevolution in ccRCC
por: Reznik, Ed, et al.
Publicado: (2023) -
CD44 Is Associated with Poor Prognosis of ccRCC and Facilitates ccRCC Cell Migration and Invasion through HAS1/MMP9
por: Du, Tan, et al.
Publicado: (2023) -
Cuproptosis in ccRCC: key player in therapeutic and prognostic targets
por: Lv, Yang, et al.
Publicado: (2023)