Cargando…
Unsupervised neural network for single cell Multi-omics INTegration (UMINT): an application to health and disease
Multi-omics studies have enabled us to understand the mechanistic drivers behind complex disease states and progressions, thereby providing novel and actionable biological insights into health status. However, integrating data from multiple modalities is challenging due to high dimensionality and di...
Autores principales: | Maitra, Chayan, Seal, Dibyendu B., Das, Vivek, De, Rajat K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244650/ https://www.ncbi.nlm.nih.gov/pubmed/37293552 http://dx.doi.org/10.3389/fmolb.2023.1184748 |
Ejemplares similares
-
Computational approaches for network-based integrative multi-omics analysis
por: Agamah, Francis E., et al.
Publicado: (2022) -
Overview of methods for characterization and visualization of a protein–protein interaction network in a multi-omics integration context
por: Robin, Vivian, et al.
Publicado: (2022) -
Computational Methods for Single-Cell Imaging and Omics Data Integration
por: Watson, Ebony Rose, et al.
Publicado: (2022) -
Application of Single-Cell Multi-Omics in Dissecting Cancer Cell Plasticity and Tumor Heterogeneity
por: Pan, Deshen, et al.
Publicado: (2021) -
Multi-omic single cell sequencing: Overview and opportunities for kidney disease therapeutic development
por: Pregizer, Steven, et al.
Publicado: (2023)