Cargando…
Single-Subject TMS Pulse Visualization on MRI-Based Brain Model: A precise method for mapping TMS pulses on cortical surface
Highly accurate visualization of the points of transcranial magnetic stimulation (TMS) application on the brain cortical surface could provide anatomy-specific analysis of TMS effects. TMS is widely used to activate cortical areas with high spatial resolution, and neuronavigation enables site-specif...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244693/ https://www.ncbi.nlm.nih.gov/pubmed/37292240 http://dx.doi.org/10.1016/j.mex.2023.102213 |
Sumario: | Highly accurate visualization of the points of transcranial magnetic stimulation (TMS) application on the brain cortical surface could provide anatomy-specific analysis of TMS effects. TMS is widely used to activate cortical areas with high spatial resolution, and neuronavigation enables site-specific TMS of particular gyrus sites. Precise control of TMS application points is crucial in determining the stimulation effects. Here, we propose a method that gives an opportunity to visualize and analyze the stimulated cortical sites by processing multi-parameter data. • This method uses MRI data to create a participant's brain model for visualization. The MRI data is segmented to obtain a raw 3D model, which is further optimized in 3D modeling software. • A Python script running in Blender uses the TMS coil's orientation data and participant's brain 3D model to define and mark the cortical sites affected by the particular TMS pulse. • The Python script can be easily customized to visualize TMS points task-specifically. |
---|