Cargando…
The osteocyte and its osteoclastogenic potential
The skeleton is an organ of dual functionality; on the one hand, it provides protection and structural competence. On the other hand, it participates extensively in coordinating homeostasis globally given that it is a mineral and hormonal reservoir. Bone is the only tissue in the body that goes thro...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244721/ https://www.ncbi.nlm.nih.gov/pubmed/37293482 http://dx.doi.org/10.3389/fendo.2023.1121727 |
_version_ | 1785054705233166336 |
---|---|
author | Marahleh, Aseel Kitaura, Hideki Ohori, Fumitoshi Noguchi, Takahiro Mizoguchi, Itaru |
author_facet | Marahleh, Aseel Kitaura, Hideki Ohori, Fumitoshi Noguchi, Takahiro Mizoguchi, Itaru |
author_sort | Marahleh, Aseel |
collection | PubMed |
description | The skeleton is an organ of dual functionality; on the one hand, it provides protection and structural competence. On the other hand, it participates extensively in coordinating homeostasis globally given that it is a mineral and hormonal reservoir. Bone is the only tissue in the body that goes through strategically consistent bouts of bone resorption to ensure its integrity and organismal survival in a temporally and spatially coordinated process, known as bone remodeling. Bone remodeling is directly enacted by three skeletal cell types, osteoclasts, osteoblasts, and osteocytes; these cells represent the acting force in a basic multicellular unit and ensure bone health maintenance. The osteocyte is an excellent mechanosensory cell and has been positioned as the choreographer of bone remodeling. It is, therefore, not surprising that a holistic grasp of the osteocyte entity in the bone is warranted. This review discusses osteocytogenesis and associated molecular and morphological changes and describes the osteocytic lacunocanalicular network (LCN) and its organization. We highlight new knowledge obtained from transcriptomic analyses of osteocytes and discuss the regulatory role of osteocytes in promoting osteoclastogenesis with an emphasis on the case of osteoclastogenesis in anosteocytic bones. We arrive at the conclusion that osteocytes exhibit several redundant means through which osteoclast formation can be initiated. However, whether osteocytes are true “orchestrators of bone remodeling” cannot be verified from the animal models used to study osteocyte biology in vivo. Results from studying osteocyte biology using current animal models should come with the caveat that these models are not osteocyte-specific, and conclusions from these studies should be interpreted cautiously. |
format | Online Article Text |
id | pubmed-10244721 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102447212023-06-08 The osteocyte and its osteoclastogenic potential Marahleh, Aseel Kitaura, Hideki Ohori, Fumitoshi Noguchi, Takahiro Mizoguchi, Itaru Front Endocrinol (Lausanne) Endocrinology The skeleton is an organ of dual functionality; on the one hand, it provides protection and structural competence. On the other hand, it participates extensively in coordinating homeostasis globally given that it is a mineral and hormonal reservoir. Bone is the only tissue in the body that goes through strategically consistent bouts of bone resorption to ensure its integrity and organismal survival in a temporally and spatially coordinated process, known as bone remodeling. Bone remodeling is directly enacted by three skeletal cell types, osteoclasts, osteoblasts, and osteocytes; these cells represent the acting force in a basic multicellular unit and ensure bone health maintenance. The osteocyte is an excellent mechanosensory cell and has been positioned as the choreographer of bone remodeling. It is, therefore, not surprising that a holistic grasp of the osteocyte entity in the bone is warranted. This review discusses osteocytogenesis and associated molecular and morphological changes and describes the osteocytic lacunocanalicular network (LCN) and its organization. We highlight new knowledge obtained from transcriptomic analyses of osteocytes and discuss the regulatory role of osteocytes in promoting osteoclastogenesis with an emphasis on the case of osteoclastogenesis in anosteocytic bones. We arrive at the conclusion that osteocytes exhibit several redundant means through which osteoclast formation can be initiated. However, whether osteocytes are true “orchestrators of bone remodeling” cannot be verified from the animal models used to study osteocyte biology in vivo. Results from studying osteocyte biology using current animal models should come with the caveat that these models are not osteocyte-specific, and conclusions from these studies should be interpreted cautiously. Frontiers Media S.A. 2023-05-24 /pmc/articles/PMC10244721/ /pubmed/37293482 http://dx.doi.org/10.3389/fendo.2023.1121727 Text en Copyright © 2023 Marahleh, Kitaura, Ohori, Noguchi and Mizoguchi https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Endocrinology Marahleh, Aseel Kitaura, Hideki Ohori, Fumitoshi Noguchi, Takahiro Mizoguchi, Itaru The osteocyte and its osteoclastogenic potential |
title | The osteocyte and its osteoclastogenic potential |
title_full | The osteocyte and its osteoclastogenic potential |
title_fullStr | The osteocyte and its osteoclastogenic potential |
title_full_unstemmed | The osteocyte and its osteoclastogenic potential |
title_short | The osteocyte and its osteoclastogenic potential |
title_sort | osteocyte and its osteoclastogenic potential |
topic | Endocrinology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244721/ https://www.ncbi.nlm.nih.gov/pubmed/37293482 http://dx.doi.org/10.3389/fendo.2023.1121727 |
work_keys_str_mv | AT marahlehaseel theosteocyteanditsosteoclastogenicpotential AT kitaurahideki theosteocyteanditsosteoclastogenicpotential AT ohorifumitoshi theosteocyteanditsosteoclastogenicpotential AT noguchitakahiro theosteocyteanditsosteoclastogenicpotential AT mizoguchiitaru theosteocyteanditsosteoclastogenicpotential AT marahlehaseel osteocyteanditsosteoclastogenicpotential AT kitaurahideki osteocyteanditsosteoclastogenicpotential AT ohorifumitoshi osteocyteanditsosteoclastogenicpotential AT noguchitakahiro osteocyteanditsosteoclastogenicpotential AT mizoguchiitaru osteocyteanditsosteoclastogenicpotential |