Cargando…
Using deep learning–derived image features in radiologic time series to make personalised predictions: proof of concept in colonic transit data
OBJECTIVES: Siamese neural networks (SNN) were used to classify the presence of radiopaque beads as part of a colonic transit time study (CTS). The SNN output was then used as a feature in a time series model to predict progression through a CTS. METHODS: This retrospective study included all patien...
Autores principales: | Kelly, Brendan S., Mathur, Prateek, Plesniar, Jan, Lawlor, Aonghus, Killeen, Ronan P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244854/ https://www.ncbi.nlm.nih.gov/pubmed/37284869 http://dx.doi.org/10.1007/s00330-023-09769-9 |
Ejemplares similares
-
Cybersecurity considerations for radiology departments involved with artificial intelligence
por: Kelly, Brendan S., et al.
Publicado: (2023) -
Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE)
por: Kelly, Brendan S., et al.
Publicado: (2022) -
Correction to: Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE)
por: Kelly, Brendan S., et al.
Publicado: (2022) -
How to apply evidence-based practice to the use of artificial intelligence in radiology (EBRAI) using the data algorithm training output (DATO) method
por: Kelly, Brendan S, et al.
Publicado: (2023) -
Automated vetting of radiology referrals: exploring natural language processing and traditional machine learning approaches
por: Potočnik, Jaka, et al.
Publicado: (2022)