Cargando…
Protein–protein interactions in the Mla lipid transport system probed by computational structure prediction and deep mutational scanning
The outer membrane (OM) of Gram-negative bacteria is an asymmetric bilayer that protects the cell from external stressors, such as antibiotics. The Mla transport system is implicated in the Maintenance of OM Lipid Asymmetry by mediating retrograde phospholipid transport across the cell envelope. Mla...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245069/ https://www.ncbi.nlm.nih.gov/pubmed/37100290 http://dx.doi.org/10.1016/j.jbc.2023.104744 |
_version_ | 1785054783595347968 |
---|---|
author | MacRae, Mark R. Puvanendran, Dhenesh Haase, Max A.B. Coudray, Nicolas Kolich, Ljuvica Lam, Cherry Baek, Minkyung Bhabha, Gira Ekiert, Damian C. |
author_facet | MacRae, Mark R. Puvanendran, Dhenesh Haase, Max A.B. Coudray, Nicolas Kolich, Ljuvica Lam, Cherry Baek, Minkyung Bhabha, Gira Ekiert, Damian C. |
author_sort | MacRae, Mark R. |
collection | PubMed |
description | The outer membrane (OM) of Gram-negative bacteria is an asymmetric bilayer that protects the cell from external stressors, such as antibiotics. The Mla transport system is implicated in the Maintenance of OM Lipid Asymmetry by mediating retrograde phospholipid transport across the cell envelope. Mla uses a shuttle-like mechanism to move lipids between the MlaFEDB inner membrane complex and the MlaA-OmpF/C OM complex, via a periplasmic lipid-binding protein, MlaC. MlaC binds to MlaD and MlaA, but the underlying protein–protein interactions that facilitate lipid transfer are not well understood. Here, we take an unbiased deep mutational scanning approach to map the fitness landscape of MlaC from Escherichia coli, which provides insights into important functional sites. Combining this analysis with AlphaFold2 structure predictions and binding experiments, we map the MlaC-MlaA and MlaC-MlaD protein–protein interfaces. Our results suggest that the MlaD and MlaA binding surfaces on MlaC overlap to a large extent, leading to a model in which MlaC can only bind one of these proteins at a time. Low-resolution cryo-electron microscopy (cryo-EM) maps of MlaC bound to MlaFEDB suggest that at least two MlaC molecules can bind to MlaD at once, in a conformation consistent with AlphaFold2 predictions. These data lead us to a model for MlaC interaction with its binding partners and insights into lipid transfer steps that underlie phospholipid transport between the bacterial inner and OMs. |
format | Online Article Text |
id | pubmed-10245069 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-102450692023-06-08 Protein–protein interactions in the Mla lipid transport system probed by computational structure prediction and deep mutational scanning MacRae, Mark R. Puvanendran, Dhenesh Haase, Max A.B. Coudray, Nicolas Kolich, Ljuvica Lam, Cherry Baek, Minkyung Bhabha, Gira Ekiert, Damian C. J Biol Chem Research Article The outer membrane (OM) of Gram-negative bacteria is an asymmetric bilayer that protects the cell from external stressors, such as antibiotics. The Mla transport system is implicated in the Maintenance of OM Lipid Asymmetry by mediating retrograde phospholipid transport across the cell envelope. Mla uses a shuttle-like mechanism to move lipids between the MlaFEDB inner membrane complex and the MlaA-OmpF/C OM complex, via a periplasmic lipid-binding protein, MlaC. MlaC binds to MlaD and MlaA, but the underlying protein–protein interactions that facilitate lipid transfer are not well understood. Here, we take an unbiased deep mutational scanning approach to map the fitness landscape of MlaC from Escherichia coli, which provides insights into important functional sites. Combining this analysis with AlphaFold2 structure predictions and binding experiments, we map the MlaC-MlaA and MlaC-MlaD protein–protein interfaces. Our results suggest that the MlaD and MlaA binding surfaces on MlaC overlap to a large extent, leading to a model in which MlaC can only bind one of these proteins at a time. Low-resolution cryo-electron microscopy (cryo-EM) maps of MlaC bound to MlaFEDB suggest that at least two MlaC molecules can bind to MlaD at once, in a conformation consistent with AlphaFold2 predictions. These data lead us to a model for MlaC interaction with its binding partners and insights into lipid transfer steps that underlie phospholipid transport between the bacterial inner and OMs. American Society for Biochemistry and Molecular Biology 2023-04-25 /pmc/articles/PMC10245069/ /pubmed/37100290 http://dx.doi.org/10.1016/j.jbc.2023.104744 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article MacRae, Mark R. Puvanendran, Dhenesh Haase, Max A.B. Coudray, Nicolas Kolich, Ljuvica Lam, Cherry Baek, Minkyung Bhabha, Gira Ekiert, Damian C. Protein–protein interactions in the Mla lipid transport system probed by computational structure prediction and deep mutational scanning |
title | Protein–protein interactions in the Mla lipid transport system probed by computational structure prediction and deep mutational scanning |
title_full | Protein–protein interactions in the Mla lipid transport system probed by computational structure prediction and deep mutational scanning |
title_fullStr | Protein–protein interactions in the Mla lipid transport system probed by computational structure prediction and deep mutational scanning |
title_full_unstemmed | Protein–protein interactions in the Mla lipid transport system probed by computational structure prediction and deep mutational scanning |
title_short | Protein–protein interactions in the Mla lipid transport system probed by computational structure prediction and deep mutational scanning |
title_sort | protein–protein interactions in the mla lipid transport system probed by computational structure prediction and deep mutational scanning |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245069/ https://www.ncbi.nlm.nih.gov/pubmed/37100290 http://dx.doi.org/10.1016/j.jbc.2023.104744 |
work_keys_str_mv | AT macraemarkr proteinproteininteractionsinthemlalipidtransportsystemprobedbycomputationalstructurepredictionanddeepmutationalscanning AT puvanendrandhenesh proteinproteininteractionsinthemlalipidtransportsystemprobedbycomputationalstructurepredictionanddeepmutationalscanning AT haasemaxab proteinproteininteractionsinthemlalipidtransportsystemprobedbycomputationalstructurepredictionanddeepmutationalscanning AT coudraynicolas proteinproteininteractionsinthemlalipidtransportsystemprobedbycomputationalstructurepredictionanddeepmutationalscanning AT kolichljuvica proteinproteininteractionsinthemlalipidtransportsystemprobedbycomputationalstructurepredictionanddeepmutationalscanning AT lamcherry proteinproteininteractionsinthemlalipidtransportsystemprobedbycomputationalstructurepredictionanddeepmutationalscanning AT baekminkyung proteinproteininteractionsinthemlalipidtransportsystemprobedbycomputationalstructurepredictionanddeepmutationalscanning AT bhabhagira proteinproteininteractionsinthemlalipidtransportsystemprobedbycomputationalstructurepredictionanddeepmutationalscanning AT ekiertdamianc proteinproteininteractionsinthemlalipidtransportsystemprobedbycomputationalstructurepredictionanddeepmutationalscanning |