Cargando…
Analysis of blood flow of unsteady Carreau-Yasuda nanofluid with viscous dissipation and chemical reaction under variable magnetic field
Blood flow analysis through arterial walls depicts unsteady non-Newtonian fluid flow behavior. Arterial walls are impacted by various chemical reactions and magnetohydrodynamic effects during treatment of malign and tumors, cancers, drug targeting and endoscopy. In this regard, current manuscript fo...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245157/ https://www.ncbi.nlm.nih.gov/pubmed/37292310 http://dx.doi.org/10.1016/j.heliyon.2023.e16522 |
_version_ | 1785054802817843200 |
---|---|
author | Qayyum, Mubashir Riaz, Muhammad Bilal Afzal, Sidra |
author_facet | Qayyum, Mubashir Riaz, Muhammad Bilal Afzal, Sidra |
author_sort | Qayyum, Mubashir |
collection | PubMed |
description | Blood flow analysis through arterial walls depicts unsteady non-Newtonian fluid flow behavior. Arterial walls are impacted by various chemical reactions and magnetohydrodynamic effects during treatment of malign and tumors, cancers, drug targeting and endoscopy. In this regard, current manuscript focuses on modeling and analysis of unsteady non-Newtonian Carreau-Yasuda fluid with chemical reaction, Brownian motion and thermophoresis under variable magnetic field. The main objective is to simulate the effect of different fluid parameters, especially variable magnetic field, chemical reaction and viscous dissipation on the blood flow to help medical practitioners in predicting the changes in blood to make diagnosis and treatment more efficient. Suitable similarity transformations are used for the conversion of partial differential equations into a coupled system of ordinary differential equations. Homotopy analysis method is used to solve the system and convergent results are drawn. Effect of different dimensionless parameters on the velocity, temperature and concentration profiles of blood flow are analyzed in shear thinning and thickening cases graphically. Analysis reveals that chemical reaction increases blood concentration which enhance the drug transportation. It is also observed that magnetic field elevates the blood flow in shear thinning and thickening scenarios. Furthermore, Brownian motion and thermophoresis increases temperature profile. |
format | Online Article Text |
id | pubmed-10245157 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-102451572023-06-08 Analysis of blood flow of unsteady Carreau-Yasuda nanofluid with viscous dissipation and chemical reaction under variable magnetic field Qayyum, Mubashir Riaz, Muhammad Bilal Afzal, Sidra Heliyon Research Article Blood flow analysis through arterial walls depicts unsteady non-Newtonian fluid flow behavior. Arterial walls are impacted by various chemical reactions and magnetohydrodynamic effects during treatment of malign and tumors, cancers, drug targeting and endoscopy. In this regard, current manuscript focuses on modeling and analysis of unsteady non-Newtonian Carreau-Yasuda fluid with chemical reaction, Brownian motion and thermophoresis under variable magnetic field. The main objective is to simulate the effect of different fluid parameters, especially variable magnetic field, chemical reaction and viscous dissipation on the blood flow to help medical practitioners in predicting the changes in blood to make diagnosis and treatment more efficient. Suitable similarity transformations are used for the conversion of partial differential equations into a coupled system of ordinary differential equations. Homotopy analysis method is used to solve the system and convergent results are drawn. Effect of different dimensionless parameters on the velocity, temperature and concentration profiles of blood flow are analyzed in shear thinning and thickening cases graphically. Analysis reveals that chemical reaction increases blood concentration which enhance the drug transportation. It is also observed that magnetic field elevates the blood flow in shear thinning and thickening scenarios. Furthermore, Brownian motion and thermophoresis increases temperature profile. Elsevier 2023-05-24 /pmc/articles/PMC10245157/ /pubmed/37292310 http://dx.doi.org/10.1016/j.heliyon.2023.e16522 Text en © 2023 Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Qayyum, Mubashir Riaz, Muhammad Bilal Afzal, Sidra Analysis of blood flow of unsteady Carreau-Yasuda nanofluid with viscous dissipation and chemical reaction under variable magnetic field |
title | Analysis of blood flow of unsteady Carreau-Yasuda nanofluid with viscous dissipation and chemical reaction under variable magnetic field |
title_full | Analysis of blood flow of unsteady Carreau-Yasuda nanofluid with viscous dissipation and chemical reaction under variable magnetic field |
title_fullStr | Analysis of blood flow of unsteady Carreau-Yasuda nanofluid with viscous dissipation and chemical reaction under variable magnetic field |
title_full_unstemmed | Analysis of blood flow of unsteady Carreau-Yasuda nanofluid with viscous dissipation and chemical reaction under variable magnetic field |
title_short | Analysis of blood flow of unsteady Carreau-Yasuda nanofluid with viscous dissipation and chemical reaction under variable magnetic field |
title_sort | analysis of blood flow of unsteady carreau-yasuda nanofluid with viscous dissipation and chemical reaction under variable magnetic field |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245157/ https://www.ncbi.nlm.nih.gov/pubmed/37292310 http://dx.doi.org/10.1016/j.heliyon.2023.e16522 |
work_keys_str_mv | AT qayyummubashir analysisofbloodflowofunsteadycarreauyasudananofluidwithviscousdissipationandchemicalreactionundervariablemagneticfield AT riazmuhammadbilal analysisofbloodflowofunsteadycarreauyasudananofluidwithviscousdissipationandchemicalreactionundervariablemagneticfield AT afzalsidra analysisofbloodflowofunsteadycarreauyasudananofluidwithviscousdissipationandchemicalreactionundervariablemagneticfield |