Cargando…
Sentiment analysis of COVID-19 cases in Greece using Twitter data
BACKGROUND: Syndromic surveillance with the use of Internet data has been used to track and forecast epidemics for the last two decades, using different sources from social media to search engine records. More recently, studies have addressed how the World Wide Web could be used as a valuable source...
Autores principales: | Samaras, Loukas, García-Barriocanal, Elena, Sicilia, Miguel-Angel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245283/ https://www.ncbi.nlm.nih.gov/pubmed/37317687 http://dx.doi.org/10.1016/j.eswa.2023.120577 |
Ejemplares similares
-
Syndromic Surveillance Models Using Web Data: The Case of Influenza in Greece and Italy Using Google Trends
por: Samaras, Loukas, et al.
Publicado: (2017) -
Syndromic surveillance using web data: a systematic review
por: Samaras, Loukas, et al.
Publicado: (2020) -
Predicting epidemics using search engine data: a comparative study on measles in the largest countries of Europe
por: Samaras, Loukas, et al.
Publicado: (2021) -
Comparing Social media and Google to detect and predict severe epidemics
por: Samaras, Loukas, et al.
Publicado: (2020) -
Global Sentiments Surrounding the COVID-19 Pandemic on Twitter: Analysis of Twitter Trends
por: Lwin, May Oo, et al.
Publicado: (2020)