Cargando…
Machine learning analysis of confounding variables of a convolutional neural network specific for abdominal aortic aneurysms
OBJECTIVE: To identify confounding variables influencing the accuracy of a convolutional neural network (CNN) specific for infrarenal abdominal aortic aneurysms (AAAs) on computed tomography angiograms (CTAs). METHODS: A Health Insurance Portability and Accountability Act-compliant, institutional re...
Autores principales: | Tomihama, Roger T., Camara, Justin R., Kiang, Sharon C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245322/ https://www.ncbi.nlm.nih.gov/pubmed/37292186 http://dx.doi.org/10.1016/j.jvssci.2022.11.004 |
Ejemplares similares
-
Development of a convolutional neural network to detect abdominal aortic aneurysms
por: Camara, Justin R., et al.
Publicado: (2022) -
Convolutional neural network for automatic detection and characterization of abdominal aortic aneurysm
por: Lareyre, Fabien, et al.
Publicado: (2023) -
Applied Machine Learning for the Prediction of Growth of Abdominal Aortic Aneurysm in Humans
por: Lee, R., et al.
Publicado: (2018) -
General Considerations of Ruptured Abdominal Aortic Aneurysm: Ruptured Abdominal Aortic Aneurysm
por: Lee, Chung Won, et al.
Publicado: (2015) -
Ruptured Abdominal Aortic Aneurysm with Antecedent Endovascular Repair of Abdominal Aortic Aneurysm
por: Cho, Jae S.
Publicado: (2014)